Movement forecasting of financial time series based on adaptive LSTM-BN network

计算机科学 时间序列 滑动窗口协议 股票市场指数 人工智能 规范化(社会学) 概念漂移 人工神经网络 计量经济学 数据挖掘 机器学习 股票市场 数学 社会学 操作系统 数据流挖掘 古生物学 生物 窗口(计算) 人类学
作者
Zhen Fang,Xu Ma,Huifeng Pan,Guangbing Yang,Gonzalo R. Arce
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:213: 119207-119207 被引量:40
标识
DOI:10.1016/j.eswa.2022.119207
摘要

Long-short term memory (LSTM) network is one of the state-of-the-art models to forecast the movement of financial time series (FTS). However, existing LSTM networks do not perform well in the long-term forecasting FTS with sharp change points, which significantly influences the accumulated returns. This paper proposes a novel long-term forecasting method of FTS movement based on a modified adaptive LSTM model. The adaptive network mainly consists of two LSTM layers followed by a pair of batch normalization (BN) layers, a dropout layer and a binary classifier. In order to capture the important profit points, we propose to use an adaptive cross-entropy loss function that enhances the prediction capacity on the sharp changes and deemphasizes the slight oscillations. Then, we perform the forecasting on multiple independent networks and vote on their output data to obtain stable forecasting result. Considering the temporal correlation of FTS, an inherited training strategy is introduced to accelerate the retraining procedure when performing the long-term forecasting task. The proposed methods are assessed and verified by the numerical experiments on the stock index datasets, including "Standard's & Poor's 500 Index", "China Securities Index 300" and "Shanghai Stock Exchange 180". A substantial improvement of forecasting performance is proved. Moreover, the proposed hybrid forecasting framework can be generalized to different FTS datasets and deep learning models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
逐风给逐风的求助进行了留言
1秒前
科研通AI5应助灌饼采纳,获得30
1秒前
Owen应助Zzzzzzzzzzz采纳,获得10
2秒前
3秒前
4秒前
巫马秋寒应助笑点低可乐采纳,获得10
4秒前
xuex1完成签到,获得积分10
4秒前
情怀应助阳光的雁山采纳,获得10
6秒前
斯文败类应助jy采纳,获得10
6秒前
6秒前
日月轮回发布了新的文献求助10
7秒前
36456657应助木香采纳,获得10
8秒前
无花果应助ns采纳,获得30
8秒前
刘铭晨完成签到,获得积分10
8秒前
9秒前
YY发布了新的文献求助10
9秒前
Rrr发布了新的文献求助10
10秒前
学术蠕虫发布了新的文献求助10
10秒前
10秒前
miumiuka完成签到,获得积分10
11秒前
个性的薯片应助lyt采纳,获得20
13秒前
sweetbearm应助寒涛先生采纳,获得10
14秒前
wanci应助YY采纳,获得10
15秒前
15秒前
16秒前
16秒前
17秒前
HC完成签到 ,获得积分10
18秒前
姚姚的赵赵完成签到,获得积分10
18秒前
JamesPei应助大豪子采纳,获得30
19秒前
jy发布了新的文献求助10
19秒前
19秒前
陆靖易发布了新的文献求助10
19秒前
LQW完成签到,获得积分20
20秒前
21秒前
plant完成签到,获得积分10
21秒前
lyt完成签到,获得积分10
21秒前
22秒前
23秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808