Movement forecasting of financial time series based on adaptive LSTM-BN network

计算机科学 时间序列 滑动窗口协议 股票市场指数 人工智能 规范化(社会学) 概念漂移 人工神经网络 计量经济学 数据挖掘 机器学习 股票市场 数学 社会学 操作系统 数据流挖掘 古生物学 生物 窗口(计算) 人类学
作者
Zhen Fang,Xu Ma,Huifeng Pan,Guangbing Yang,Gonzalo R. Arce
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:213: 119207-119207 被引量:40
标识
DOI:10.1016/j.eswa.2022.119207
摘要

Long-short term memory (LSTM) network is one of the state-of-the-art models to forecast the movement of financial time series (FTS). However, existing LSTM networks do not perform well in the long-term forecasting FTS with sharp change points, which significantly influences the accumulated returns. This paper proposes a novel long-term forecasting method of FTS movement based on a modified adaptive LSTM model. The adaptive network mainly consists of two LSTM layers followed by a pair of batch normalization (BN) layers, a dropout layer and a binary classifier. In order to capture the important profit points, we propose to use an adaptive cross-entropy loss function that enhances the prediction capacity on the sharp changes and deemphasizes the slight oscillations. Then, we perform the forecasting on multiple independent networks and vote on their output data to obtain stable forecasting result. Considering the temporal correlation of FTS, an inherited training strategy is introduced to accelerate the retraining procedure when performing the long-term forecasting task. The proposed methods are assessed and verified by the numerical experiments on the stock index datasets, including "Standard's & Poor's 500 Index", "China Securities Index 300" and "Shanghai Stock Exchange 180". A substantial improvement of forecasting performance is proved. Moreover, the proposed hybrid forecasting framework can be generalized to different FTS datasets and deep learning models.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助nn采纳,获得30
1秒前
1秒前
1秒前
科研通AI6应助缓慢的初兰采纳,获得10
1秒前
笙默0329完成签到,获得积分20
1秒前
jerry完成签到,获得积分10
1秒前
1秒前
lruen7应助黑泡泡采纳,获得10
1秒前
想个名字完成签到,获得积分10
1秒前
sxx完成签到 ,获得积分10
1秒前
无花果应助憨憨采纳,获得10
2秒前
兴奋的发卡完成签到 ,获得积分10
2秒前
123发布了新的文献求助10
2秒前
orixero应助hsf采纳,获得10
2秒前
清爽琦完成签到 ,获得积分10
2秒前
量子星尘发布了新的文献求助10
3秒前
3秒前
3秒前
4秒前
4秒前
5秒前
浮游应助qwe采纳,获得10
5秒前
慕青应助迟安歌采纳,获得10
5秒前
菜鸟发布了新的文献求助10
5秒前
美满山晴完成签到,获得积分20
5秒前
6秒前
6秒前
研友_VZG7GZ应助李李李采纳,获得10
6秒前
6秒前
瑾璟发布了新的文献求助10
6秒前
小小小小w完成签到,获得积分10
6秒前
l零碎完成签到,获得积分10
7秒前
7秒前
学术小牛发布了新的文献求助10
7秒前
Lollipop发布了新的文献求助10
7秒前
CrazyDiamond发布了新的文献求助10
7秒前
FlipFlops完成签到,获得积分10
7秒前
7秒前
细心的世倌完成签到,获得积分10
8秒前
nihaoya发布了新的文献求助30
8秒前
高分求助中
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Objective or objectionable? Ideological aspects of dictionaries 360
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5581856
求助须知:如何正确求助?哪些是违规求助? 4665999
关于积分的说明 14759982
捐赠科研通 4607956
什么是DOI,文献DOI怎么找? 2528430
邀请新用户注册赠送积分活动 1497713
关于科研通互助平台的介绍 1466585