铋
凝聚态物理
材料科学
范德瓦尔斯力
异质结
量子点
纳米
碲化铋
纳米技术
量子振荡
拓扑绝缘体
表面状态
曲面(拓扑)
物理
热电材料
量子力学
复合材料
费米面
几何学
分子
热导率
超导电性
数学
冶金
作者
Laisi Chen,Amy X. Wu,Naol Tulu,Joshua Wang,Adrian Juanson,Kenji Watanabe,Takashi Taniguchi,Michael T. Pettes,Marshall Campbell,Chaitanya Gadre,Yinong Zhou,Hangman Chen,Penghui Cao,Luis A. Jauregui,Ruqian Wu,Xiaoqing Pan,Javier Sanchez-Yamagishi
出处
期刊:Cornell University - arXiv
日期:2022-01-01
被引量:3
标识
DOI:10.48550/arxiv.2211.07681
摘要
Confining materials to two-dimensional forms changes the behavior of electrons and enables new devices. However, most materials are challenging to produce as uniform thin crystals. Here, we present a new synthesis approach where crystals are grown in a nanoscale mold defined by atomically-flat van der Waals (vdW) materials. By heating and compressing bismuth in a vdW mold made of hexagonal boron nitride (hBN), we grow ultraflat bismuth crystals less than 10 nanometers thick. Due to quantum confinement, the bismuth bulk states are gapped, isolating intrinsic Rashba surface states for transport studies. The vdW-molded bismuth shows exceptional electronic transport, enabling the observation of Shubnikov-de Haas quantum oscillations originating from the (111) surface state Landau levels, which have eluded previous studies. By measuring the gate-dependent magnetoresistance, we observe multi-carrier quantum oscillations and Landau level splitting, with features originating from both the top and bottom surfaces. Our vdW-mold growth technique establishes a platform for electronic studies and control of bismuth's Rashba surface states and topological boundary modes. Beyond bismuth, the vdW-molding approach provides a low-cost way to synthesize ultrathin crystals and directly integrate them into a vdW heterostructure.
科研通智能强力驱动
Strongly Powered by AbleSci AI