Unsupervised graph-level representation learning with hierarchical contrasts

计算机科学 图形 理论计算机科学 人工智能 判别式 特征学习
作者
Wei Ju,Yiyang Gu,Xiao Luo,Yifan Wang,Haochen Yuan,Huasong Zhong,Ming Zhang
出处
期刊:Neural Networks [Elsevier]
卷期号:158: 359-368 被引量:44
标识
DOI:10.1016/j.neunet.2022.11.019
摘要

Unsupervised graph-level representation learning has recently shown great potential in a variety of domains, ranging from bioinformatics to social networks. Plenty of graph contrastive learning methods have been proposed to generate discriminative graph-level representations recently. They typically design multiple types of graph augmentations and enforce a graph to have consistent representations under different views. However, these techniques mostly neglect the intrinsic hierarchical structure of the graph, resulting in a limited exploration of semantic information for graph representation. Moreover, they often rely on a large number of negative samples to prevent collapsing into trivial solutions, while a great need for negative samples may lead to memory issues during optimization in graph domains. To address the two issues, this paper develops an unsupervised graph-level representation learning framework named Hierarchical Graph Contrastive Learning (HGCL), which investigates the hierarchical structural semantics of a graph at both node and graph levels. Specifically, our HGCL consists of three parts, i.e., node-level contrastive learning, graph-level contrastive learning, and mutual contrastive learning to capture graph semantics hierarchically. Furthermore, the Siamese network and momentum update are further involved to release the demand for excessive negative samples. Finally, the experimental results on both benchmark datasets for graph classification and large-scale OGB datasets for transfer learning demonstrate that our proposed HGCL significantly outperforms a broad range of state-of-the-art baselines.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助灵巧婷冉采纳,获得10
刚刚
陈航完成签到,获得积分10
1秒前
微光熠发布了新的文献求助10
1秒前
1秒前
善学以致用应助BINGBING1230采纳,获得10
2秒前
3秒前
量子星尘发布了新的文献求助10
3秒前
4秒前
4秒前
科研通AI6应助美美baby采纳,获得10
4秒前
5秒前
5秒前
积极纲发布了新的文献求助10
6秒前
7秒前
ray完成签到,获得积分10
7秒前
blue发布了新的文献求助10
8秒前
9秒前
葡萄子完成签到 ,获得积分10
9秒前
10秒前
10秒前
10秒前
王海海完成签到,获得积分10
10秒前
11秒前
hjy关注了科研通微信公众号
11秒前
12秒前
科研通AI2S应助哭泣的擎汉采纳,获得10
12秒前
12秒前
12秒前
小马甲应助hxm采纳,获得10
13秒前
王海海发布了新的文献求助10
13秒前
初夏蔚蓝完成签到,获得积分10
14秒前
JayL完成签到,获得积分10
14秒前
金海完成签到 ,获得积分10
14秒前
xdedd发布了新的文献求助10
15秒前
曹志毅发布了新的文献求助10
15秒前
沅沅发布了新的文献求助30
16秒前
16秒前
NexusExplorer应助星星赶路采纳,获得10
17秒前
nana完成签到,获得积分20
17秒前
小蘑菇应助执着傲柏采纳,获得10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5553450
求助须知:如何正确求助?哪些是违规求助? 4637983
关于积分的说明 14651924
捐赠科研通 4579900
什么是DOI,文献DOI怎么找? 2511951
邀请新用户注册赠送积分活动 1486817
关于科研通互助平台的介绍 1457747