Unsupervised graph-level representation learning with hierarchical contrasts

计算机科学 图形 理论计算机科学 人工智能 判别式 特征学习
作者
Wei Ju,Yiyang Gu,Xiao Luo,Yifan Wang,Haochen Yuan,Huasong Zhong,Ming Zhang
出处
期刊:Neural Networks [Elsevier BV]
卷期号:158: 359-368 被引量:44
标识
DOI:10.1016/j.neunet.2022.11.019
摘要

Unsupervised graph-level representation learning has recently shown great potential in a variety of domains, ranging from bioinformatics to social networks. Plenty of graph contrastive learning methods have been proposed to generate discriminative graph-level representations recently. They typically design multiple types of graph augmentations and enforce a graph to have consistent representations under different views. However, these techniques mostly neglect the intrinsic hierarchical structure of the graph, resulting in a limited exploration of semantic information for graph representation. Moreover, they often rely on a large number of negative samples to prevent collapsing into trivial solutions, while a great need for negative samples may lead to memory issues during optimization in graph domains. To address the two issues, this paper develops an unsupervised graph-level representation learning framework named Hierarchical Graph Contrastive Learning (HGCL), which investigates the hierarchical structural semantics of a graph at both node and graph levels. Specifically, our HGCL consists of three parts, i.e., node-level contrastive learning, graph-level contrastive learning, and mutual contrastive learning to capture graph semantics hierarchically. Furthermore, the Siamese network and momentum update are further involved to release the demand for excessive negative samples. Finally, the experimental results on both benchmark datasets for graph classification and large-scale OGB datasets for transfer learning demonstrate that our proposed HGCL significantly outperforms a broad range of state-of-the-art baselines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
无私绿兰完成签到 ,获得积分10
3秒前
高婉婷发布了新的文献求助10
4秒前
斯文明杰发布了新的文献求助10
5秒前
腼腆的缘分完成签到,获得积分10
5秒前
XR完成签到 ,获得积分10
6秒前
6秒前
浮游应助sfliufighting采纳,获得10
6秒前
dlm12138发布了新的文献求助10
6秒前
2633148059完成签到,获得积分10
7秒前
7秒前
小蘑菇应助沉默采纳,获得10
8秒前
222完成签到,获得积分10
9秒前
小白狗完成签到,获得积分10
10秒前
Xxxzzq发布了新的文献求助10
10秒前
JJ完成签到,获得积分10
12秒前
12秒前
gulugulu完成签到,获得积分20
12秒前
科研通AI2S应助斯文明杰采纳,获得10
13秒前
dlm12138完成签到,获得积分20
15秒前
gulugulu发布了新的文献求助10
15秒前
15秒前
16秒前
16秒前
高婉婷完成签到,获得积分20
18秒前
18秒前
懒羊羊大王完成签到,获得积分10
19秒前
20秒前
21秒前
陈道哥发布了新的文献求助10
21秒前
香蕉觅云应助Kikisman采纳,获得10
22秒前
22秒前
科研通AI5应助hehe采纳,获得10
24秒前
qql发布了新的文献求助10
24秒前
斯文明杰发布了新的文献求助10
25秒前
tutueer完成签到,获得积分20
26秒前
26秒前
勤奋天真完成签到 ,获得积分10
28秒前
Jaden完成签到,获得积分10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Highway Capacity Manual 7th Edition 800
Inherited Metabolic Disease in Adults: A Clinical Guide 500
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4632944
求助须知:如何正确求助?哪些是违规求助? 4029107
关于积分的说明 12466293
捐赠科研通 3715327
什么是DOI,文献DOI怎么找? 2050021
邀请新用户注册赠送积分活动 1081627
科研通“疑难数据库(出版商)”最低求助积分说明 963954