Unsupervised graph-level representation learning with hierarchical contrasts

计算机科学 图形 理论计算机科学 人工智能 判别式 特征学习
作者
Wei Ju,Yiyang Gu,Xiao Luo,Yifan Wang,Haochen Yuan,Huasong Zhong,Ming Zhang
出处
期刊:Neural Networks [Elsevier]
卷期号:158: 359-368 被引量:28
标识
DOI:10.1016/j.neunet.2022.11.019
摘要

Unsupervised graph-level representation learning has recently shown great potential in a variety of domains, ranging from bioinformatics to social networks. Plenty of graph contrastive learning methods have been proposed to generate discriminative graph-level representations recently. They typically design multiple types of graph augmentations and enforce a graph to have consistent representations under different views. However, these techniques mostly neglect the intrinsic hierarchical structure of the graph, resulting in a limited exploration of semantic information for graph representation. Moreover, they often rely on a large number of negative samples to prevent collapsing into trivial solutions, while a great need for negative samples may lead to memory issues during optimization in graph domains. To address the two issues, this paper develops an unsupervised graph-level representation learning framework named Hierarchical Graph Contrastive Learning (HGCL), which investigates the hierarchical structural semantics of a graph at both node and graph levels. Specifically, our HGCL consists of three parts, i.e., node-level contrastive learning, graph-level contrastive learning, and mutual contrastive learning to capture graph semantics hierarchically. Furthermore, the Siamese network and momentum update are further involved to release the demand for excessive negative samples. Finally, the experimental results on both benchmark datasets for graph classification and large-scale OGB datasets for transfer learning demonstrate that our proposed HGCL significantly outperforms a broad range of state-of-the-art baselines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
李争发布了新的文献求助10
1秒前
1秒前
可可西完成签到,获得积分10
1秒前
2秒前
2秒前
英俊的铭应助Jim采纳,获得50
2秒前
呆萌的天宇完成签到,获得积分20
3秒前
3秒前
mob5110完成签到 ,获得积分10
3秒前
4秒前
张德美发布了新的文献求助10
5秒前
Tigher发布了新的文献求助30
5秒前
5秒前
北城无夏发布了新的文献求助10
6秒前
sundayslyu发布了新的文献求助10
6秒前
迷人不凡完成签到,获得积分10
6秒前
尘飞扬应助郑石采纳,获得10
7秒前
8秒前
小小雨天发布了新的文献求助10
8秒前
zzz完成签到,获得积分10
8秒前
8秒前
9秒前
9秒前
cym完成签到 ,获得积分10
9秒前
Fx完成签到 ,获得积分10
10秒前
10秒前
任性的泥猴桃完成签到 ,获得积分10
10秒前
zzz发布了新的文献求助10
11秒前
11秒前
小王要努力完成签到,获得积分10
11秒前
orixero应助Miss_Q采纳,获得10
12秒前
星辰发布了新的文献求助10
12秒前
13秒前
科研热心人应助虚无采纳,获得10
13秒前
北城无夏完成签到,获得积分10
13秒前
14秒前
爆米花应助易佳采纳,获得10
15秒前
15秒前
P88JNG完成签到,获得积分10
15秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
The Healthy Socialist Life in Maoist China 600
The Vladimirov Diaries [by Peter Vladimirov] 600
Encyclopedia of Computational Mechanics,2 edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3269641
求助须知:如何正确求助?哪些是违规求助? 2909365
关于积分的说明 8348600
捐赠科研通 2579582
什么是DOI,文献DOI怎么找? 1402926
科研通“疑难数据库(出版商)”最低求助积分说明 655575
邀请新用户注册赠送积分活动 634853