Unsupervised graph-level representation learning with hierarchical contrasts

计算机科学 图形 理论计算机科学 人工智能 判别式 特征学习
作者
Wei Ju,Yiyang Gu,Xiao Luo,Yifan Wang,Haochen Yuan,Huasong Zhong,Ming Zhang
出处
期刊:Neural Networks [Elsevier BV]
卷期号:158: 359-368 被引量:44
标识
DOI:10.1016/j.neunet.2022.11.019
摘要

Unsupervised graph-level representation learning has recently shown great potential in a variety of domains, ranging from bioinformatics to social networks. Plenty of graph contrastive learning methods have been proposed to generate discriminative graph-level representations recently. They typically design multiple types of graph augmentations and enforce a graph to have consistent representations under different views. However, these techniques mostly neglect the intrinsic hierarchical structure of the graph, resulting in a limited exploration of semantic information for graph representation. Moreover, they often rely on a large number of negative samples to prevent collapsing into trivial solutions, while a great need for negative samples may lead to memory issues during optimization in graph domains. To address the two issues, this paper develops an unsupervised graph-level representation learning framework named Hierarchical Graph Contrastive Learning (HGCL), which investigates the hierarchical structural semantics of a graph at both node and graph levels. Specifically, our HGCL consists of three parts, i.e., node-level contrastive learning, graph-level contrastive learning, and mutual contrastive learning to capture graph semantics hierarchically. Furthermore, the Siamese network and momentum update are further involved to release the demand for excessive negative samples. Finally, the experimental results on both benchmark datasets for graph classification and large-scale OGB datasets for transfer learning demonstrate that our proposed HGCL significantly outperforms a broad range of state-of-the-art baselines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
2秒前
2秒前
JamesPei应助比巴卜采纳,获得10
2秒前
Lucas应助沟通亿心采纳,获得10
2秒前
lizzie发布了新的文献求助10
3秒前
酷波er应助亮亮采纳,获得10
4秒前
伶俐雅柏完成签到,获得积分10
4秒前
糖璃发布了新的文献求助10
5秒前
啊啊发布了新的文献求助10
5秒前
longlong发布了新的文献求助10
6秒前
夏xia完成签到 ,获得积分10
7秒前
李科研发布了新的文献求助10
7秒前
碳烤小肥肠完成签到,获得积分10
10秒前
yx_cheng应助科研通管家采纳,获得10
10秒前
领导范儿应助科研通管家采纳,获得10
10秒前
yx_cheng应助科研通管家采纳,获得10
10秒前
SciGPT应助科研通管家采纳,获得10
10秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
石石石发布了新的文献求助10
11秒前
11秒前
11秒前
11秒前
11秒前
英俊的铭应助科研通管家采纳,获得10
11秒前
11秒前
共享精神应助洁净醉柳采纳,获得10
12秒前
乐乐应助缓慢平蓝采纳,获得10
12秒前
13秒前
13秒前
mimi完成签到,获得积分10
14秒前
darmy完成签到,获得积分10
14秒前
安河桥完成签到,获得积分10
15秒前
儒雅的雪一完成签到,获得积分10
16秒前
量子星尘发布了新的文献求助10
16秒前
英俊的铭应助李科研采纳,获得10
17秒前
无情亦凝完成签到,获得积分10
18秒前
lyc45491314发布了新的文献求助10
18秒前
18秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3975755
求助须知:如何正确求助?哪些是违规求助? 3520108
关于积分的说明 11200829
捐赠科研通 3256492
什么是DOI,文献DOI怎么找? 1798298
邀请新用户注册赠送积分活动 877509
科研通“疑难数据库(出版商)”最低求助积分说明 806403