亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

MRI Fat‐Saturated T2‐Weighted Radiomics Model for Identifying the Ki‐67 Index of Soft Tissue Sarcomas

列线图 医学 逻辑回归 单变量 一致性 接收机工作特性 无线电技术 放射科 队列 Ki-67 单变量分析 磁共振成像 肿瘤科 多元统计 核医学 内科学 多元分析 统计 数学 免疫组织化学
作者
Yang Yang,Liyuan Zhang,Ting Wang,Zhiyuan Jiang,Qingqing Li,Yinghua Wu,Zhen Cai,Xi Chen
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
卷期号:58 (2): 534-545 被引量:7
标识
DOI:10.1002/jmri.28518
摘要

Background Ki‐67 expression has been shown to be an important risk factor associated with prognosis in patients with soft tissue sarcomas (STSs). Its assessment requires fine‐needle biopsy and its accuracy can be influenced by tumor heterogeneity. Purpose To develop and test an MRI‐based radiomics nomogram for identifying the Ki‐67 status of STSs. Study type Retrospective. Population A total of 149 patients at two independent institutions (training cohort [high Ki‐67/low ki‐67]: 102 [52/50], external validation cohort [high Ki‐67/low ki‐67]: 47 [28/19]) with STSs. Field Strength/Sequence Fat‐saturated T2‐weighted imaging (FS‐T2WI) with a fat‐suppressed fast spin/turbo spin echo sequence at 1.5 T or 3 T. Assessment After radiomics feature extraction, logistic regression (LR), random forest (RF), support vector machine (SVM), and k‐nearest neighbor (KNN) were used to construct radiomics models to distinguish between high and low Ki‐67 status. Clinical‐MRI characteristics included age, gender, location, size, margin, and MRI morphological features (size, margin, signal intensity, and peritumoral hyperintensity) were assessed. Univariate and multivariate logistic regression analysis were applied for screening significant risk factors. Radiomics nomogram was constructed by radiomics signature and risk factors. Statistical Tests Model performances (discrimination, calibration, and clinical usefulness) were validated in the validation cohort. The nomogram was assessed using the Harrell index of concordance (C‐index), calibration curve analysis. The clinical utility of the model was assessed by decision curve analysis (DCA). Results LR, RF, SVM, and KNN models represented AUCs of 0.789, 0.755, 0.726, and 0.701 in the validation cohort ( P > 0.05). The nomogram had a C‐index of 0.895 (95% CI: 0.837–0.953) in the training cohort and 0.852 (95% CI: 0.796–0.957) in the validation cohort and it demonstrated good calibration and clinical utility ( P = 0.972 for the training cohort and P = 0.727 for the validation cohort). Data Conclusion This MRI‐based radiomics nomogram developed showed good performance in identifying Ki‐67 expression status in STSs. Level of Evidence 3. Technical Efficacy Stage 2.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
lala完成签到,获得积分10
刚刚
2秒前
3秒前
小白小王完成签到,获得积分10
5秒前
mmmm发布了新的文献求助10
6秒前
7秒前
李健的小迷弟应助Nacy采纳,获得10
9秒前
Tian发布了新的文献求助10
11秒前
彦子完成签到 ,获得积分10
12秒前
FMHChan完成签到,获得积分10
13秒前
Lorain完成签到,获得积分10
14秒前
124332发布了新的文献求助10
15秒前
16秒前
17秒前
完美世界应助mmmm采纳,获得10
19秒前
Nacy发布了新的文献求助10
23秒前
田様应助zhao采纳,获得10
26秒前
33秒前
明明发布了新的文献求助10
39秒前
JMZ14258完成签到 ,获得积分10
42秒前
TXZ06完成签到,获得积分10
42秒前
Ava应助Bonnienuit采纳,获得10
48秒前
科研通AI2S应助科研通管家采纳,获得10
53秒前
科研通AI2S应助科研通管家采纳,获得10
53秒前
NiceSunnyDay完成签到 ,获得积分10
56秒前
诚心爆米花完成签到,获得积分10
56秒前
玖月完成签到 ,获得积分10
1分钟前
忐忑的若云完成签到 ,获得积分10
1分钟前
DChen完成签到 ,获得积分10
1分钟前
明轩发布了新的文献求助10
1分钟前
天天快乐应助Nacy采纳,获得10
1分钟前
adcc102完成签到 ,获得积分10
1分钟前
爱听歌芝麻完成签到,获得积分10
1分钟前
1分钟前
超级无敌学术苦瓜完成签到,获得积分20
1分钟前
Nacy发布了新的文献求助10
1分钟前
晴qing发布了新的文献求助10
1分钟前
我是老大应助明轩采纳,获得10
1分钟前
1分钟前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 930
The Vladimirov Diaries [by Peter Vladimirov] 600
Development of general formulas for bolted flanges, by E.O. Waters [and others] 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3265408
求助须知:如何正确求助?哪些是违规求助? 2905465
关于积分的说明 8333862
捐赠科研通 2575732
什么是DOI,文献DOI怎么找? 1400111
科研通“疑难数据库(出版商)”最低求助积分说明 654702
邀请新用户注册赠送积分活动 633525