HN-PPISP: a hybrid network based on MLP-Mixer for protein–protein interaction site prediction

计算机科学 人工智能 卷积神经网络 变压器 人工神经网络 多层感知器 混合神经网络 模式识别(心理学) 感知器 深度学习 机器学习 工程类 电压 电气工程
作者
Yixin Kang,Yulong Xu,Xinchao Wang,Bin Pu,Xuekun Yang,Yulong Rao,Jianguo Chen
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:24 (1) 被引量:11
标识
DOI:10.1093/bib/bbac480
摘要

Biological experimental approaches to protein-protein interaction (PPI) site prediction are critical for understanding the mechanisms of biochemical processes but are time-consuming and laborious. With the development of Deep Learning (DL) techniques, the most popular Convolutional Neural Networks (CNN)-based methods have been proposed to address these problems. Although significant progress has been made, these methods still have limitations in encoding the characteristics of each amino acid in protein sequences. Current methods cannot efficiently explore the nature of Position Specific Scoring Matrix (PSSM), secondary structure and raw protein sequences by processing them all together. For PPI site prediction, how to effectively model the PPI context with attention to prediction remains an open problem. In addition, the long-distance dependencies of PPI features are important, which is very challenging for many CNN-based methods because the innate ability of CNN is difficult to outperform auto-regressive models like Transformers.To effectively mine the properties of PPI features, a novel hybrid neural network named HN-PPISP is proposed, which integrates a Multi-layer Perceptron Mixer (MLP-Mixer) module for local feature extraction and a two-stage multi-branch module for global feature capture. The model merits Transformer, TextCNN and Bi-LSTM as a powerful alternative for PPI site prediction. On the one hand, this is the first application of an advanced Transformer (i.e. MLP-Mixer) with a hybrid network for sequence-based PPI prediction. On the other hand, unlike existing methods that treat global features altogether, the proposed two-stage multi-branch hybrid module firstly assigns different attention scores to the input features and then encodes the feature through different branch modules. In the first stage, different improved attention modules are hybridized to extract features from the raw protein sequences, secondary structure and PSSM, respectively. In the second stage, a multi-branch network is designed to aggregate information from both branches in parallel. The two branches encode the features and extract dependencies through several operations such as TextCNN, Bi-LSTM and different activation functions. Experimental results on real-world public datasets show that our model consistently achieves state-of-the-art performance over seven remarkable baselines.The source code of HN-PPISP model is available at https://github.com/ylxu05/HN-PPISP.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Slence完成签到,获得积分10
刚刚
大旗发布了新的文献求助10
2秒前
顺利萧完成签到,获得积分10
2秒前
jz完成签到,获得积分10
3秒前
羽冰酒完成签到 ,获得积分10
5秒前
丘比特应助tyc采纳,获得10
5秒前
lan橙完成签到,获得积分10
5秒前
大东东完成签到,获得积分10
6秒前
老王完成签到 ,获得积分10
8秒前
orixero应助8y24dp采纳,获得10
9秒前
大旗完成签到,获得积分20
11秒前
一个稚气的小孩完成签到,获得积分10
12秒前
科研通AI2S应助熊boy采纳,获得10
13秒前
小吴同志完成签到,获得积分10
13秒前
13秒前
Adel完成签到 ,获得积分10
14秒前
傲娇的新烟完成签到 ,获得积分10
15秒前
15秒前
珩溢完成签到 ,获得积分10
16秒前
was_3完成签到,获得积分10
16秒前
zcg完成签到,获得积分10
17秒前
Hyc28441711完成签到,获得积分10
18秒前
tyc发布了新的文献求助10
18秒前
御风完成签到,获得积分10
20秒前
唐唐完成签到 ,获得积分10
20秒前
NIUBEN发布了新的文献求助10
20秒前
朴素小霜完成签到 ,获得积分10
21秒前
21秒前
qiancib202完成签到,获得积分10
22秒前
DAWN完成签到 ,获得积分10
24秒前
kokodayour完成签到,获得积分10
24秒前
mm完成签到,获得积分10
24秒前
细雨听风完成签到,获得积分10
25秒前
irvinzp完成签到,获得积分10
26秒前
慕青应助jack潘采纳,获得10
26秒前
河马完成签到,获得积分10
26秒前
青春完成签到,获得积分0
27秒前
cq_2完成签到,获得积分10
28秒前
WY完成签到 ,获得积分10
28秒前
花开四海完成签到 ,获得积分10
28秒前
高分求助中
좌파는 어떻게 좌파가 됐나:한국 급진노동운동의 형성과 궤적 2500
Sustainability in Tides Chemistry 1500
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Cognitive linguistics critical concepts in linguistics 800
Threaded Harmony: A Sustainable Approach to Fashion 799
Livre et militantisme : La Cité éditeur 1958-1967 500
氟盐冷却高温堆非能动余热排出性能及安全分析研究 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3052675
求助须知:如何正确求助?哪些是违规求助? 2709926
关于积分的说明 7418483
捐赠科研通 2354527
什么是DOI,文献DOI怎么找? 1246159
科研通“疑难数据库(出版商)”最低求助积分说明 605951
版权声明 595921