Harmonization of robust radiomic features in the submandibular gland using multi-ultrasound systems: a preliminary study

协调 医学 颌下腺 置信区间 显著性差异 超声波 人工智能 核医学 放射科 病理 计算机科学 内科学 声学 物理
作者
Yoon Joo Choi,Kug Jin Jeon,Ari Lee,Sang‐Sun Han,Chena Lee
出处
期刊:Dentomaxillofacial Radiology [Oxford University Press]
卷期号:52 (2)
标识
DOI:10.1259/dmfr.20220284
摘要

Objective: This study aimed to identify robust radiomic features in multiultrasonography of the submandibular gland and normalize the interdevice discrepancies by applying a machine-learning-based harmonization method. Methods: Ultrasonographic images of normal submandibular gland of young healthy adults, aged between 20 and 40 years, were selected from two different devices. In a total of 30 images, the region of interest was determined along the border of gland parenchyma, and 103 radiomic features were extracted using A-VIEW. The coefficient of variation (CV) was obtained for individual features, and the features showing CV less than 10% were selected. For the selected features, the interdevice discrepancy was normalized using machine-learning method, called the ComBat harmonization. Median differences of the features between the two scanners, before and after harmonization, were compared using Mann–Whitney U-test; confidence interval of 95%. Results: Among total 103 radiomic features, 17 features were selected as robust, showing CV less than 10% in both scanners. All values of selected features, except two, showed a statistical difference between the two devices. After applying the ComBat harmonization method, the median and distribution of the 16 features were harmonized to show no significant difference between the two scanners (p > 0.05). One feature remained different (p ≤ 0.05). Conclusion: On ultrasonographic examination, robust radiomic features for normal submandibular gland were obtained and interdevice normalization was efficiently conducted using ComBat harmonization. Our findings would be useful for multidevices or multicenter studies based on clinical ultrasonographic imaging data to improve the accuracy of the overall diagnostic model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Yangon完成签到,获得积分10
1秒前
典雅碧空完成签到,获得积分10
2秒前
一进实验室就犯困完成签到,获得积分10
2秒前
完美的发卡完成签到,获得积分10
2秒前
大力水手完成签到,获得积分10
3秒前
cc发布了新的文献求助10
3秒前
水的叶子66完成签到,获得积分10
4秒前
善学以致用应助Lengbo采纳,获得10
4秒前
起风了关注了科研通微信公众号
4秒前
七米日光完成签到 ,获得积分10
5秒前
好有聊完成签到,获得积分10
5秒前
赘婿应助Sean采纳,获得10
7秒前
tt完成签到 ,获得积分10
7秒前
li完成签到,获得积分10
7秒前
行止发布了新的文献求助10
7秒前
DGYT7786完成签到 ,获得积分10
8秒前
李超完成签到,获得积分10
8秒前
9秒前
左旋多巴完成签到,获得积分10
9秒前
坡坡大王完成签到,获得积分10
9秒前
zxt完成签到,获得积分10
9秒前
大力向南完成签到,获得积分10
9秒前
yydssss发布了新的文献求助10
9秒前
haohao完成签到,获得积分10
10秒前
pp发布了新的文献求助10
11秒前
怎么会睡不醒完成签到 ,获得积分10
11秒前
不安的可乐完成签到,获得积分10
12秒前
兴奋的定帮应助zh20130采纳,获得10
13秒前
是小李呀完成签到,获得积分10
13秒前
jjjjchou完成签到,获得积分10
13秒前
自信的冬日完成签到,获得积分10
13秒前
深情的翠芙完成签到,获得积分10
14秒前
小鱼完成签到,获得积分10
14秒前
xjh完成签到,获得积分10
15秒前
wry发布了新的文献求助10
15秒前
cc完成签到 ,获得积分10
15秒前
misalia完成签到,获得积分10
15秒前
16秒前
16秒前
薛之谦完成签到 ,获得积分10
16秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3953552
求助须知:如何正确求助?哪些是违规求助? 3499089
关于积分的说明 11093922
捐赠科研通 3229669
什么是DOI,文献DOI怎么找? 1785711
邀请新用户注册赠送积分活动 869476
科研通“疑难数据库(出版商)”最低求助积分说明 801478