Differential Evolution With Duplication Analysis for Feature Selection in Classification

特征选择 特征(语言学) 模式识别(心理学) 人工智能 维数之咒 人口 计算机科学 数据挖掘 降维 选择(遗传算法) 哲学 语言学 人口学 社会学
作者
Peng Wang,Bing Xue,Jing Liang,Mengjie Zhang
出处
期刊:IEEE transactions on cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:53 (10): 6676-6689 被引量:9
标识
DOI:10.1109/tcyb.2022.3213236
摘要

By selecting a small subset of relevant features, feature selection can reduce the dimensionality of the problem while maintaining or increasing the discriminating ability of the data. However, many existing feature selection approaches ignore the fact that there are multiple optimal solutions to a feature selection problem. Multiple feature subsets with different features selected can achieve very similar or the same classification accuracy. To search for multiple optimal feature subsets, a niching-based differential evolution (DE) method with duplication analysis is proposed. In the proposed method, the duplicated feature subsets in the population are modified by the proposed subset repairing scheme which can produce unique feature subsets. Second, the mutation operator in DE is improved, which uses both the niche and global information to produce promising feature subsets. Third, a new selection method considering the diversity among feature subsets is adopted to form a new population for the next-generation. In the experiments, the proposed method is compared with seven evolutionary feature selection algorithms and two typical feature selection methods on 18 datasets. The results show that the proposed algorithm achieves higher classification accuracy than the compared methods on most of the used datasets. Furthermore, the proposed method can find different feature subsets with very similar or the same classification accuracy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
量子星尘发布了新的文献求助10
3秒前
浩浩发布了新的文献求助10
3秒前
4秒前
FashionBoy应助93577采纳,获得10
4秒前
4秒前
乐乐应助阿司匹林采纳,获得10
4秒前
5秒前
23发布了新的文献求助10
6秒前
科研通AI6应助Ralphter采纳,获得30
6秒前
妮儿发布了新的文献求助10
7秒前
yang发布了新的文献求助10
7秒前
科目三应助叶叶叶采纳,获得10
7秒前
JamesPei应助吴漾采纳,获得10
9秒前
11秒前
11秒前
zhang完成签到,获得积分10
11秒前
11秒前
12秒前
小马甲应助111采纳,获得30
12秒前
12秒前
12秒前
14秒前
15秒前
15秒前
16秒前
十一完成签到,获得积分20
16秒前
vince完成签到 ,获得积分10
16秒前
fei菲飞发布了新的文献求助10
16秒前
gardenia发布了新的文献求助10
16秒前
Henvy发布了新的文献求助10
17秒前
sunrise发布了新的文献求助10
17秒前
赘婿应助露露杏仁露采纳,获得10
18秒前
asdfzxcv应助zy采纳,获得10
19秒前
哈哈完成签到,获得积分10
20秒前
心海发布了新的文献求助10
20秒前
忧郁虔发布了新的文献求助10
20秒前
啊啊啊完成签到,获得积分10
20秒前
陈谨诺完成签到,获得积分10
21秒前
头哥完成签到,获得积分10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5648816
求助须知:如何正确求助?哪些是违规求助? 4776730
关于积分的说明 15045622
捐赠科研通 4807687
什么是DOI,文献DOI怎么找? 2571022
邀请新用户注册赠送积分活动 1527707
关于科研通互助平台的介绍 1486609