Random forest: An optimal chlorophyll-a algorithm for optically complex inland water suffering atmospheric correction uncertainties

随机森林 支持向量机 算法 大气校正 环境科学 人工神经网络 灵敏度(控制系统) 富营养化 计算机科学 机器学习 人工智能 遥感 生态学 地理 物理 卫星 天文 电子工程 营养物 工程类 生物
作者
Ming Shen,Juhua Luo,Zhigang Cao,Kun Xue,Tianci Qi,Jinge Ma,Dong Liu,Kaishan Song,Lian Feng,Hongtao Duan
出处
期刊:Journal of Hydrology [Elsevier]
卷期号:615: 128685-128685 被引量:36
标识
DOI:10.1016/j.jhydrol.2022.128685
摘要

A robust and reliable chlorophyll-a (Chla) concentration algorithm is still lacking for optically complex waters due to the lack of understanding of the bio-optical process. Machine learning approaches, which excel at detecting potential complex nonlinear relationships, provide opportunities to estimate Chla accurately for optically complex waters. However, the uncertainties in atmospheric correction (AC) may be amplified in different Chla algorithms. Here, we aim to select one state-of-the-art algorithm or establish a new algorithm based on machine learning approaches that less sensitive to AC uncertainties. Firstly, nine state-of-the-art empirical, semianalytical, and optical water types (OWT) classification-based Chla algorithms were implemented. These existing algorithms showed good performance by using in situ database, however, failed in actual OLCI applications due to their sensitivity to AC uncertainties. Thus, four popular machine learning approaches (random forest regression (RFR), extreme gradient boosting (XGBoost), deep neural network (DNN), and support vector regression (SVR)) were then employed. Among them, the “RFR-Chla” model performed the best and showed less sensitivity to AC uncertainties. Finally, the Chla spatiotemporal variations in 163 major lakes across eastern China were mapped from OLCI between May 2016 and April 2020 using the proposed RFR-Chla model. Generally, the lakes in eastern China are severely eutrophic, with an average Chla concentration of 33.39 ± 6.95 μg/L. Spatially, Chla in the south of eastern China was significantly higher than those in northern lakes. Seasonally, Chla was high in the summer and autumn and low in the spring and winter. This study provides a reference for water quality monitoring in turbid inland waters suffering certain AC uncertainties and supports aquatic management and SDG 6 reporting.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
鱼儿游完成签到 ,获得积分10
2秒前
2秒前
零度蓝莓完成签到,获得积分10
3秒前
苏苏完成签到 ,获得积分10
3秒前
大方的飞风完成签到 ,获得积分10
3秒前
dsm完成签到 ,获得积分10
4秒前
shanshan完成签到,获得积分10
5秒前
小胖墩完成签到,获得积分10
6秒前
JJ发布了新的文献求助10
7秒前
芜湖完成签到,获得积分10
8秒前
yifan92完成签到,获得积分10
10秒前
潇洒依白完成签到,获得积分10
10秒前
在水一方应助支雨泽采纳,获得10
11秒前
蒸馏水应助科研通管家采纳,获得10
11秒前
wwy应助科研通管家采纳,获得10
11秒前
Jacob完成签到,获得积分10
11秒前
核桃应助科研通管家采纳,获得30
11秒前
Ava应助科研通管家采纳,获得10
11秒前
AneyWinter66应助科研通管家采纳,获得10
11秒前
邓佳鑫Alan应助科研通管家采纳,获得10
12秒前
邓佳鑫Alan应助科研通管家采纳,获得10
12秒前
科研通AI6应助科研通管家采纳,获得10
12秒前
12秒前
邓佳鑫Alan应助科研通管家采纳,获得10
12秒前
邓佳鑫Alan应助科研通管家采纳,获得10
12秒前
邓佳鑫Alan应助科研通管家采纳,获得10
12秒前
Jasper应助科研通管家采纳,获得10
12秒前
Estrella应助科研通管家采纳,获得10
12秒前
充电宝应助科研通管家采纳,获得10
12秒前
大模型应助科研通管家采纳,获得10
12秒前
邓佳鑫Alan应助科研通管家采纳,获得10
12秒前
邓佳鑫Alan应助科研通管家采纳,获得10
12秒前
圈圈应助科研通管家采纳,获得10
12秒前
852应助科研通管家采纳,获得10
12秒前
邓佳鑫Alan应助科研通管家采纳,获得10
12秒前
邓佳鑫Alan应助科研通管家采纳,获得10
12秒前
邓佳鑫Alan应助科研通管家采纳,获得10
12秒前
田様应助科研通管家采纳,获得10
12秒前
邓佳鑫Alan应助科研通管家采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Peptide Synthesis_Methods and Protocols 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5603597
求助须知:如何正确求助?哪些是违规求助? 4688619
关于积分的说明 14854949
捐赠科研通 4694087
什么是DOI,文献DOI怎么找? 2540895
邀请新用户注册赠送积分活动 1507124
关于科研通互助平台的介绍 1471806