Random forest: An optimal chlorophyll-a algorithm for optically complex inland water suffering atmospheric correction uncertainties

随机森林 支持向量机 算法 大气校正 环境科学 人工神经网络 灵敏度(控制系统) 富营养化 计算机科学 机器学习 人工智能 遥感 生态学 地理 物理 生物 卫星 工程类 营养物 电子工程 天文
作者
Ming Shen,Juhua Luo,Zhigang Cao,Kun Xue,Tianci Qi,Jinge Ma,Dong Liu,Kaishan Song,Lian Feng,Hongtao Duan
出处
期刊:Journal of Hydrology [Elsevier]
卷期号:615: 128685-128685 被引量:36
标识
DOI:10.1016/j.jhydrol.2022.128685
摘要

A robust and reliable chlorophyll-a (Chla) concentration algorithm is still lacking for optically complex waters due to the lack of understanding of the bio-optical process. Machine learning approaches, which excel at detecting potential complex nonlinear relationships, provide opportunities to estimate Chla accurately for optically complex waters. However, the uncertainties in atmospheric correction (AC) may be amplified in different Chla algorithms. Here, we aim to select one state-of-the-art algorithm or establish a new algorithm based on machine learning approaches that less sensitive to AC uncertainties. Firstly, nine state-of-the-art empirical, semianalytical, and optical water types (OWT) classification-based Chla algorithms were implemented. These existing algorithms showed good performance by using in situ database, however, failed in actual OLCI applications due to their sensitivity to AC uncertainties. Thus, four popular machine learning approaches (random forest regression (RFR), extreme gradient boosting (XGBoost), deep neural network (DNN), and support vector regression (SVR)) were then employed. Among them, the “RFR-Chla” model performed the best and showed less sensitivity to AC uncertainties. Finally, the Chla spatiotemporal variations in 163 major lakes across eastern China were mapped from OLCI between May 2016 and April 2020 using the proposed RFR-Chla model. Generally, the lakes in eastern China are severely eutrophic, with an average Chla concentration of 33.39 ± 6.95 μg/L. Spatially, Chla in the south of eastern China was significantly higher than those in northern lakes. Seasonally, Chla was high in the summer and autumn and low in the spring and winter. This study provides a reference for water quality monitoring in turbid inland waters suffering certain AC uncertainties and supports aquatic management and SDG 6 reporting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科目三应助飞飞采纳,获得10
刚刚
香蕉觅云应助饼饼采纳,获得10
刚刚
李明完成签到 ,获得积分10
刚刚
Zorion发布了新的文献求助10
刚刚
CodeCraft应助刻苦念桃采纳,获得10
1秒前
刘同心完成签到,获得积分10
1秒前
我是老大应助飘逸太清采纳,获得10
2秒前
2秒前
112完成签到,获得积分10
2秒前
乐观的丝袜完成签到 ,获得积分10
3秒前
努力的小韩完成签到,获得积分10
3秒前
LO7pM2完成签到,获得积分10
3秒前
4秒前
阿萍发布了新的文献求助10
4秒前
英姑应助牛顿的苹果采纳,获得10
4秒前
hc完成签到,获得积分10
4秒前
TZ完成签到,获得积分10
4秒前
我行我素完成签到,获得积分10
4秒前
4秒前
孙孙那你们完成签到,获得积分20
5秒前
Wen完成签到,获得积分10
6秒前
SciGPT应助紫色奶萨采纳,获得10
6秒前
6秒前
7秒前
7秒前
7秒前
tcx发布了新的文献求助10
7秒前
黄同学发布了新的文献求助10
7秒前
bkagyin应助冷瞳Tong采纳,获得10
7秒前
7秒前
8秒前
Dylan完成签到,获得积分10
8秒前
旺仔发布了新的文献求助10
9秒前
9秒前
冬果发布了新的文献求助10
9秒前
9秒前
9秒前
10秒前
10秒前
小马甲应助Celestine采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5351701
求助须知:如何正确求助?哪些是违规求助? 4484725
关于积分的说明 13960182
捐赠科研通 4384369
什么是DOI,文献DOI怎么找? 2408910
邀请新用户注册赠送积分活动 1401467
关于科研通互助平台的介绍 1374968