Random forest: An optimal chlorophyll-a algorithm for optically complex inland water suffering atmospheric correction uncertainties

随机森林 支持向量机 算法 大气校正 环境科学 人工神经网络 灵敏度(控制系统) 富营养化 计算机科学 机器学习 人工智能 遥感 生态学 地理 物理 生物 卫星 工程类 营养物 电子工程 天文
作者
Ming Shen,Juhua Luo,Zhigang Cao,Kun Xue,Tianci Qi,Jinge Ma,Dong Liu,Kaishan Song,Lian Feng,Hongtao Duan
出处
期刊:Journal of Hydrology [Elsevier BV]
卷期号:615: 128685-128685 被引量:36
标识
DOI:10.1016/j.jhydrol.2022.128685
摘要

A robust and reliable chlorophyll-a (Chla) concentration algorithm is still lacking for optically complex waters due to the lack of understanding of the bio-optical process. Machine learning approaches, which excel at detecting potential complex nonlinear relationships, provide opportunities to estimate Chla accurately for optically complex waters. However, the uncertainties in atmospheric correction (AC) may be amplified in different Chla algorithms. Here, we aim to select one state-of-the-art algorithm or establish a new algorithm based on machine learning approaches that less sensitive to AC uncertainties. Firstly, nine state-of-the-art empirical, semianalytical, and optical water types (OWT) classification-based Chla algorithms were implemented. These existing algorithms showed good performance by using in situ database, however, failed in actual OLCI applications due to their sensitivity to AC uncertainties. Thus, four popular machine learning approaches (random forest regression (RFR), extreme gradient boosting (XGBoost), deep neural network (DNN), and support vector regression (SVR)) were then employed. Among them, the “RFR-Chla” model performed the best and showed less sensitivity to AC uncertainties. Finally, the Chla spatiotemporal variations in 163 major lakes across eastern China were mapped from OLCI between May 2016 and April 2020 using the proposed RFR-Chla model. Generally, the lakes in eastern China are severely eutrophic, with an average Chla concentration of 33.39 ± 6.95 μg/L. Spatially, Chla in the south of eastern China was significantly higher than those in northern lakes. Seasonally, Chla was high in the summer and autumn and low in the spring and winter. This study provides a reference for water quality monitoring in turbid inland waters suffering certain AC uncertainties and supports aquatic management and SDG 6 reporting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大椒完成签到 ,获得积分10
2秒前
5秒前
7秒前
wisdom完成签到,获得积分10
7秒前
slayers发布了新的文献求助30
10秒前
11秒前
e746700020完成签到,获得积分10
12秒前
高兴尔冬完成签到,获得积分10
12秒前
李爱国应助不安的秋白采纳,获得10
14秒前
忧伤的步美完成签到,获得积分10
19秒前
小西完成签到 ,获得积分10
20秒前
郝老头完成签到,获得积分10
21秒前
13313完成签到,获得积分10
22秒前
su完成签到 ,获得积分10
23秒前
26秒前
31秒前
量子星尘发布了新的文献求助10
31秒前
slayers完成签到 ,获得积分10
31秒前
33秒前
知犯何逆完成签到,获得积分10
35秒前
Krsky完成签到,获得积分10
37秒前
ding应助不安的秋白采纳,获得10
38秒前
39秒前
41秒前
HHHAN发布了新的文献求助10
45秒前
威武的沂完成签到,获得积分10
50秒前
52秒前
53秒前
55秒前
笨笨青筠完成签到 ,获得积分10
58秒前
mengmenglv完成签到 ,获得积分0
58秒前
Tonald Yang完成签到 ,获得积分20
1分钟前
1分钟前
落后的怀梦完成签到 ,获得积分10
1分钟前
陈坤完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
斯文败类应助zgx采纳,获得10
1分钟前
默默完成签到 ,获得积分10
1分钟前
KY Mr.WANG完成签到,获得积分10
1分钟前
1分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038039
求助须知:如何正确求助?哪些是违规求助? 3575756
关于积分的说明 11373782
捐赠科研通 3305574
什么是DOI,文献DOI怎么找? 1819239
邀请新用户注册赠送积分活动 892655
科研通“疑难数据库(出版商)”最低求助积分说明 815022