Coordination Engineering of Single‐Atom Iron Catalysts for Oxygen Evolution Reaction

过电位 催化作用 范德瓦尔斯力 Atom(片上系统) 化学 析氧 分解水 结晶学 材料科学 纳米技术 有机化学 物理化学 计算机科学 分子 电化学 光催化 嵌入式系统 电极
作者
Weijie Yang,Binghui Zhou,Zhenhe Jia,Chongchong Wu,Wei Li,Zhengyang Gao,Hao Li
出处
期刊:Chemcatchem [Wiley]
卷期号:14 (22) 被引量:12
标识
DOI:10.1002/cctc.202201016
摘要

Abstract Developing highly active oxygen evolution reaction (OER) catalyst is essential to improve the performance of a water electrolyzer, where single‐atom catalysts (SACs) have shown promising performance in recent years. However, while SACs with various coordination environment have become experimentally feasible, knowledge about the structure‐performance relationship of SACs is still very limited, especially for the emerging multiple p ‐block element‐doped SACs substrates. Herein, by adjusting the coordination environment of single‐atom iron catalysts, 122 SACs with various substrates were designed for comprehensive analysis. Through spin‐polarized density functional theory calculations with van der Waals corrections, 52 stable single‐atom iron catalysts were identified. To analyze their OER performance, an OER volcano activity model was derived to predict their performance as the function of O* and HO* binding free energies. Interestingly, a Fe 1 B 1 C 1 N 2 ‐pen structure was found to have an outstanding OER activity (with a theoretical overpotential of 0.40 V vs . reversible hydrogen electrode) due to its unique adsorption mode that strengthens HO‐bonding by forming the Fe−OH−B bond. Based on these results, the OER performance of 26 TM 1 /B 1 C 1 N 2 ‐pen (TM=Ti−Zn, Zr−Cd, and Hf−Au) SACs were determined based on this unique coordination environment by B‐doping. Most importantly, this study shows that the OER performance of SACs can be significantly improved by tuning the coordination environment of an active metal center.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
YIYI完成签到,获得积分20
1秒前
wanci应助immm采纳,获得10
1秒前
JIAN关注了科研通微信公众号
2秒前
共享精神应助mole采纳,获得30
2秒前
2秒前
3秒前
3秒前
爆米花应助ClaudiaCY采纳,获得10
4秒前
5秒前
一壶古酒应助胖虎采纳,获得50
5秒前
大胆的一刀完成签到,获得积分10
6秒前
cjlumm发布了新的文献求助10
7秒前
贤惠的翰发布了新的文献求助10
8秒前
8秒前
8秒前
MC番薯发布了新的文献求助10
9秒前
www发布了新的文献求助10
9秒前
科研通AI2S应助旺旺采纳,获得10
10秒前
坚强的纸鹤完成签到,获得积分20
11秒前
Lucas应助土豪的醉香采纳,获得10
11秒前
PhDLi完成签到,获得积分10
11秒前
香蕉诗蕊举报jinggaier求助涉嫌违规
12秒前
斯文败类应助承一采纳,获得10
12秒前
12秒前
14秒前
yuanshl1985发布了新的文献求助30
15秒前
15秒前
BenBen发布了新的文献求助10
16秒前
坦率灵槐应助Nanami_ii采纳,获得10
16秒前
坦率灵槐应助沉静的灵松采纳,获得10
17秒前
Akim应助yuanyuan采纳,获得10
17秒前
未央应助搞怪的鹤采纳,获得10
18秒前
18秒前
量子星尘发布了新的文献求助10
19秒前
潇洒的如松完成签到,获得积分10
20秒前
火星上的曼彤完成签到,获得积分10
22秒前
橘子味完成签到,获得积分10
22秒前
旺旺完成签到,获得积分20
22秒前
霸气雯完成签到,获得积分10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5648573
求助须知:如何正确求助?哪些是违规求助? 4775700
关于积分的说明 15044558
捐赠科研通 4807505
什么是DOI,文献DOI怎么找? 2570811
邀请新用户注册赠送积分活动 1527652
关于科研通互助平台的介绍 1486501