已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Plant disease detection using machine learning approaches

计算机科学 机器学习 人工智能 支持向量机 朴素贝叶斯分类器 随机森林 植物病害 模式识别(心理学) 生物技术 生物
作者
Imtiaz Ahmed,Pramod Kumar Yadav
出处
期刊:Expert Systems [Wiley]
卷期号:40 (5) 被引量:52
标识
DOI:10.1111/exsy.13136
摘要

Abstract Plant health care is the science of anticipating and diagnosing the advent of life‐threatening diseases in plants. The fatality rate of plants can be reduced by diagnosing them for any signs early on. The early detection of such diseases is one possibility for lowering plant mortality rates. Machine learning (ML), a type of artificial intelligence technology that allows researchers to enhance and develop without being explicitly programmed, is used in this study to build early prediction models for plant disease diagnosis. Due to the similarities of crops throughout the early phonological phases, crop classification has proved problematic. ML can be applied to a variety of tasks recognize different types of crops at low altitude platforms with the help of drones that provide high‐resolution optical imagery. The drones are employed to photograph phonological stages, and these greyscale photographs are then utilized to develop grey level co‐occurrence matrices‐based characteristics. In this article, the proposed plant disease detection models are developed using ML approaches such as random forest‐nearest neighbours, linear regression, Naive Bayes, neural networks, and support vector machine. The performance of the generated plants disease risk evaluation model is calculated using unbiased metrics such as true positive rate, true negative rate, precision, recall, and F 1‐score method are all factors to consider. The results revealed that the ensemble plants disease model outperforms the other proposed and developed plant disease detection models. The proposed and developed plant disease prediction models aimed to predict disease detection in the early stages, allowing for early preventive actions and predictive maintenance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
liusuyi完成签到,获得积分10
1秒前
吴子鹏完成签到,获得积分10
1秒前
艺_完成签到 ,获得积分10
2秒前
3秒前
哇塞完成签到 ,获得积分10
4秒前
pphu完成签到,获得积分10
5秒前
ddd发布了新的文献求助10
5秒前
wwwjy完成签到 ,获得积分10
5秒前
茉莉香片发布了新的文献求助10
6秒前
莫晓岚完成签到 ,获得积分10
7秒前
8秒前
识时务这也完成签到,获得积分10
10秒前
FashionBoy应助zy采纳,获得30
12秒前
科研通AI6应助安详的中心采纳,获得10
13秒前
洼地的浮游生物完成签到,获得积分10
13秒前
14秒前
pphu发布了新的文献求助10
16秒前
20秒前
zyx发布了新的文献求助10
20秒前
nenoaowu发布了新的文献求助10
20秒前
茉莉香片完成签到,获得积分10
21秒前
21秒前
22秒前
苗条白枫完成签到 ,获得积分10
23秒前
科研通AI6应助ddd采纳,获得10
23秒前
抚琴祛魅完成签到 ,获得积分10
23秒前
木齐Jay完成签到,获得积分10
28秒前
Zz发布了新的文献求助10
28秒前
华仔应助记录采纳,获得10
28秒前
小二郎应助ceeray23采纳,获得20
29秒前
30秒前
31秒前
FashionBoy应助Yu采纳,获得10
31秒前
31秒前
34秒前
me关闭了me文献求助
36秒前
lqh0211完成签到,获得积分10
36秒前
爆米花应助tejing1158采纳,获得10
37秒前
ddd完成签到,获得积分10
38秒前
39秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5509144
求助须知:如何正确求助?哪些是违规求助? 4604163
关于积分的说明 14489285
捐赠科研通 4538831
什么是DOI,文献DOI怎么找? 2487198
邀请新用户注册赠送积分活动 1469617
关于科研通互助平台的介绍 1441838