Plant disease detection using machine learning approaches

计算机科学 机器学习 人工智能 支持向量机 朴素贝叶斯分类器 随机森林 植物病害 模式识别(心理学) 生物技术 生物
作者
Imtiaz Ahmed,Pramod Kumar Yadav
出处
期刊:Expert Systems [Wiley]
卷期号:40 (5) 被引量:52
标识
DOI:10.1111/exsy.13136
摘要

Abstract Plant health care is the science of anticipating and diagnosing the advent of life‐threatening diseases in plants. The fatality rate of plants can be reduced by diagnosing them for any signs early on. The early detection of such diseases is one possibility for lowering plant mortality rates. Machine learning (ML), a type of artificial intelligence technology that allows researchers to enhance and develop without being explicitly programmed, is used in this study to build early prediction models for plant disease diagnosis. Due to the similarities of crops throughout the early phonological phases, crop classification has proved problematic. ML can be applied to a variety of tasks recognize different types of crops at low altitude platforms with the help of drones that provide high‐resolution optical imagery. The drones are employed to photograph phonological stages, and these greyscale photographs are then utilized to develop grey level co‐occurrence matrices‐based characteristics. In this article, the proposed plant disease detection models are developed using ML approaches such as random forest‐nearest neighbours, linear regression, Naive Bayes, neural networks, and support vector machine. The performance of the generated plants disease risk evaluation model is calculated using unbiased metrics such as true positive rate, true negative rate, precision, recall, and F 1‐score method are all factors to consider. The results revealed that the ensemble plants disease model outperforms the other proposed and developed plant disease detection models. The proposed and developed plant disease prediction models aimed to predict disease detection in the early stages, allowing for early preventive actions and predictive maintenance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
valiant完成签到,获得积分10
刚刚
啦啦啦啦完成签到,获得积分10
刚刚
山山完成签到 ,获得积分10
1秒前
jodie0105完成签到,获得积分10
2秒前
星辰大海应助Silver采纳,获得10
2秒前
小二郎应助c445507405采纳,获得10
2秒前
老迟到的雪糕完成签到,获得积分10
3秒前
怕黑书翠完成签到,获得积分10
3秒前
3秒前
3秒前
英俊芷完成签到 ,获得积分10
3秒前
羽言完成签到,获得积分10
3秒前
盆栽完成签到,获得积分10
3秒前
xeauyca35完成签到,获得积分10
4秒前
mg完成签到,获得积分10
4秒前
pluto应助犹豫的觅云采纳,获得10
4秒前
Yen完成签到,获得积分10
4秒前
ye完成签到,获得积分10
4秒前
4秒前
方文浩关注了科研通微信公众号
5秒前
沉默的宛筠完成签到,获得积分10
5秒前
右右完成签到,获得积分10
6秒前
feishxixi完成签到,获得积分10
6秒前
YinHy完成签到,获得积分10
7秒前
小刘完成签到,获得积分10
7秒前
九点半上课了完成签到,获得积分10
7秒前
英俊的铭应助开心的小熊采纳,获得20
7秒前
8秒前
笑点低的紫完成签到,获得积分10
9秒前
晚风完成签到,获得积分10
10秒前
leishenwang完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助10
11秒前
Sheryl完成签到,获得积分10
11秒前
缓慢晟睿完成签到,获得积分10
11秒前
细心沛山完成签到,获得积分10
11秒前
SYY完成签到,获得积分10
11秒前
Creamsoda完成签到,获得积分10
12秒前
深海鳕鱼完成签到,获得积分10
13秒前
李明涵完成签到 ,获得积分10
13秒前
坚强幼荷发布了新的文献求助10
14秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986586
求助须知:如何正确求助?哪些是违规求助? 3529069
关于积分的说明 11242999
捐赠科研通 3267514
什么是DOI,文献DOI怎么找? 1803784
邀请新用户注册赠送积分活动 881175
科研通“疑难数据库(出版商)”最低求助积分说明 808582