基因敲除
赫拉
活性氧
GPX4
脂质过氧化
活力测定
细胞生物学
化学
癌细胞
细胞生长
谷胱甘肽过氧化物酶
抗氧化剂
细胞
超氧化物歧化酶
生物
生物化学
细胞凋亡
癌症
遗传学
作者
Anwar Abdurahman,Yu Li,Shi-Zheng Jia,Xin-Wen Xu,Shujing Lin,Pei Ouyang,Zhi He,Zhong-Hao Zhang,Qiong Liu,Ying Xu,Guo-Li Song
出处
期刊:Metallomics
[Oxford University Press]
日期:2023-01-01
卷期号:15 (4)
被引量:6
标识
DOI:10.1093/mtomcs/mfad019
摘要
Abstract Selenoprotein K (SELENOK) is one of the endoplasmic reticulum (ER) proteins that mainly functions in the regulation of ER stress, calcium flux, and antioxidant defense. Reactive oxygen species (ROS) is one of the key indicators of ferroptosis, and SELENOK inhibition could disrupt ROS balance, and consequently might cause ferroptosis. However, there are no previous studies about the mechanism of SELENOK in ferroptosis by regulating ROS. In this study, we report the effect of SELENOK inhibition on cell proliferation, viability, iron recycling–associated proteins, ROS, antioxidant enzymes, and lipid peroxidation of cervical cancer cells (HeLa cells). The results showed that ROS levels and iron-dependent lipid peroxidation were significantly enhanced, whereas cell viability and proliferation were significantly downregulated, and resulted in marked reductions in tumor size after SELENOK knockdown. SELENOK knockdown also caused steep decreases in glutathione peroxidase 4/glutathione levels and deterioration in ROS scavenging ability, and exacerbated ferroptosis in HeLa cells. Our findings elucidated that SELENOK knockdown could shrink tumor size by regulating ferroptosis, which might provide a theoretical basis for treating cervical cancer.
科研通智能强力驱动
Strongly Powered by AbleSci AI