阴极
钠
材料科学
理论(学习稳定性)
纳米技术
化学工程
化学
计算机科学
工程类
物理化学
机器学习
冶金
作者
Meng Li,Haoxiang Zhuo,Jiuwei Lei,Yaqing Guo,Yifei Yuan,Kuan Wang,Zhou Liao,Wei Xia,Dongsheng Geng,Xueliang Sun,Jiangtao Hu,Biwei Xiao
标识
DOI:10.1038/s41467-025-57378-5
摘要
The O3-type layered oxide represents a highly promising candidate for sodium-ion batteries (SIBs). However, the intrinsic stability law of these cathodes remains elusive due to the complex phase transition mechanism and migration of transition metal (TM) ions. Here, we underscore how the ratio between the spacings of alkali metal layer and TM layer (R = dO-Na-O/dO-TM-O) plays a critical role in determining the structural stability and the corresponding electrochemical performance. We design a peculiar family of NaxMn0.4Ni0.3Fe0.15Li0.1Ti0.05O2 (0.55 ≤ x ≤ 1) composition that is thermodynamically stable as an O3-type structure even when R is as high as 1.969, far exceeding 1.62 that normal O3-type structures can reach at most. The high R-value puts the O3 cathode in the preparatory stage for the O3-P3 phase transition, resulting in a rapid yet smooth phase transition process. It also induces a significantly stretched interstitial tetrahedral structure to the Na layer, thus effectively impeding TM migration. Leveraging this mechanism, we reexamine the underlying cause for enhanced stability in P2/O3 hybrid structure. Besides the conventional wisdom of an interlocking effect, the high R-value nature of its O3 sub-phase also plays a pivotal role. O3-type layered oxides are promising intercalative electrode materials for Na-ion batteries. Here, authors analyze the interlayer spacings of a family of oxides and propose an intrinsic structural parameter to serve as a measure of cycling stability.
科研通智能强力驱动
Strongly Powered by AbleSci AI