材料科学
催化作用
法拉第效率
电解质
电合成
化学工程
析氧
电子转移
传质
碱金属
分解水
电化学
过氧化氢
无机化学
电极
物理化学
热力学
化学
光催化
有机化学
工程类
物理
作者
Jae-Hyuk Shim,Jaewoo Lee,Heejong Shin,Dong Hyeon Mok,Sungeun Heo,Vinod K. Paidi,Byoung‐Hoon Lee,Hyeon Seok Lee,Juhyun Yang,Dongho Shin,Jeongin Moon,Kang Kim,Maeng‐Joon Jung,Eungjun Lee,Megalamane S. Bootharaju,Jeong Hyun Kim,Subin Park,Mi‐Ju Kim,Pieter Glatzel,Sung Jong Yoo
标识
DOI:10.1002/adma.202418489
摘要
Abstract Electrochemically generating hydrogen peroxide (H 2 O 2 ) from oxygen offers a more sustainable and cost‐effective alternative to conventional anthraquinone process. In alkaline conditions, H 2 O 2 is unstable as HO 2 − , and in neutral electrolytes, alkali cation crossover causes system instability. Producing H 2 O 2 in acidic electrolytes ensures enhanced stability and efficiency. However, in acidic conditions, the oxygen reduction reaction mechanism is dominated by the inner‐sphere electron transfer pathway, requiring careful consideration of both reaction and mass transfer kinetics. These stringent requirements limit H 2 O 2 production efficiency, typically below 10–20% at industrial‐relevant current densities (>300 mA cm −2 ). Using a multiscale approach that combines active site tuning with macrostructure tuning, this work presents an octahedron‐like cobalt structure on interconnected hierarchical porous nanofibers, achieving a faradaic efficiency exceeding 80% at 400 mA cm −2 and stable operation for over 120 h at 100 mA cm −2 . At 300 mA cm −2 , the optimized catalyst demonstrates a cell potential of 2.14 V, resulting in an energy efficiency of 26%.
科研通智能强力驱动
Strongly Powered by AbleSci AI