A new data processing strategy combined with a convolutional neural network for rapid and accurate prediction of geographical classifications of natural products

可追溯性 计算机科学 卷积神经网络 指纹(计算) 人工智能 数据挖掘 人工神经网络 领域(数学) 模式识别(心理学) 机器学习 数学 软件工程 纯数学
作者
Bingwen Zhou,Mengke Jia,Fan Zhang,Jin Qi,Boyang Yu
出处
期刊:Chemometrics and Intelligent Laboratory Systems [Elsevier]
卷期号:227: 104594-104594 被引量:2
标识
DOI:10.1016/j.chemolab.2022.104594
摘要

Geographic traceability has attracted attention in the field of food and natural products. It is related to security and quality and is inseparable from the vital interests of producers and consumers. A conventional method for geographic traceability is to combine chemical fingerprints with chemometrics. However, insufficient information is provided from a single detection system for high accuracy traceability. This study uses 'Two-Elements-Multi-Information-Fingerprints' (TEMIF) to obtain more fingerprint information, implemented on Cnidium monnieri (L.) Cuss from six different provinces in eastern China. Due to differing polarities, the chemical compositions of the sample can be divided into weak polar parts and strong polar parts. Different chromatographic systems were used to detect different polar compositions. All chromatograms obtained were deconstructed and reconstructed into TEMIF. The frequently used classification models have poor performance in such complex data. Therefore, a convolutional neural network (CNN) was used to process TEMIF. As a result, the more information carried on the fingerprint, the higher is the model's classification accuracy. The accuracy of the CNN model was much higher than that of the traditional machine learning model. Under the same data, support vector machine has the highest accuracy of 62.67% among the three traditional machine learning models, while CNN model can reach 99.80%. On the premise of enriching chemical information, our strategy greatly improved accuracy and made the geographic traceability model more rapid. The online automatic geographic traceability could be realized using a combination of the model and chromatographic workstation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
不打扰完成签到 ,获得积分10
2秒前
恶恶么v完成签到,获得积分10
2秒前
纯真的元风完成签到,获得积分10
2秒前
3秒前
小任完成签到,获得积分10
3秒前
woshiwuziq完成签到 ,获得积分10
6秒前
深山何处钟声鸣完成签到,获得积分10
7秒前
留胡子的霖完成签到,获得积分10
9秒前
cruise完成签到,获得积分20
10秒前
烟花应助陈圈圈采纳,获得10
11秒前
12秒前
16秒前
我是老大应助无敌鸡哥采纳,获得10
17秒前
这个大头张呀完成签到,获得积分10
18秒前
张三发布了新的文献求助10
19秒前
小黄完成签到 ,获得积分10
20秒前
20秒前
21秒前
多肉考拉发布了新的文献求助10
23秒前
AeroY发布了新的文献求助10
24秒前
坚强的纸鹤完成签到,获得积分10
25秒前
一小部分我完成签到 ,获得积分10
26秒前
金子悠月完成签到,获得积分10
27秒前
27秒前
zpp完成签到 ,获得积分10
29秒前
AeroY完成签到,获得积分10
30秒前
30秒前
善学以致用应助mjt采纳,获得10
30秒前
31秒前
无敌鸡哥完成签到,获得积分10
31秒前
胡图图完成签到,获得积分10
33秒前
隐形之玉发布了新的文献求助10
34秒前
LJ完成签到,获得积分10
34秒前
范先生完成签到,获得积分10
35秒前
无敌鸡哥发布了新的文献求助10
36秒前
Emily完成签到,获得积分10
37秒前
38秒前
Qvby3完成签到 ,获得积分10
39秒前
40秒前
失眠夏之发布了新的文献求助10
43秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137511
求助须知:如何正确求助?哪些是违规求助? 2788516
关于积分的说明 7786944
捐赠科研通 2444783
什么是DOI,文献DOI怎么找? 1300018
科研通“疑难数据库(出版商)”最低求助积分说明 625770
版权声明 601023