已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A new data processing strategy combined with a convolutional neural network for rapid and accurate prediction of geographical classifications of natural products

可追溯性 计算机科学 卷积神经网络 指纹(计算) 人工智能 数据挖掘 人工神经网络 领域(数学) 模式识别(心理学) 机器学习 数学 软件工程 纯数学
作者
Bingwen Zhou,Mengke Jia,Fan Zhang,Jin Qi,Boyang Yu
出处
期刊:Chemometrics and Intelligent Laboratory Systems [Elsevier BV]
卷期号:227: 104594-104594 被引量:4
标识
DOI:10.1016/j.chemolab.2022.104594
摘要

Geographic traceability has attracted attention in the field of food and natural products. It is related to security and quality and is inseparable from the vital interests of producers and consumers. A conventional method for geographic traceability is to combine chemical fingerprints with chemometrics. However, insufficient information is provided from a single detection system for high accuracy traceability. This study uses 'Two-Elements-Multi-Information-Fingerprints' (TEMIF) to obtain more fingerprint information, implemented on Cnidium monnieri (L.) Cuss from six different provinces in eastern China. Due to differing polarities, the chemical compositions of the sample can be divided into weak polar parts and strong polar parts. Different chromatographic systems were used to detect different polar compositions. All chromatograms obtained were deconstructed and reconstructed into TEMIF. The frequently used classification models have poor performance in such complex data. Therefore, a convolutional neural network (CNN) was used to process TEMIF. As a result, the more information carried on the fingerprint, the higher is the model's classification accuracy. The accuracy of the CNN model was much higher than that of the traditional machine learning model. Under the same data, support vector machine has the highest accuracy of 62.67% among the three traditional machine learning models, while CNN model can reach 99.80%. On the premise of enriching chemical information, our strategy greatly improved accuracy and made the geographic traceability model more rapid. The online automatic geographic traceability could be realized using a combination of the model and chromatographic workstation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一一发布了新的文献求助10
3秒前
4秒前
伊洛完成签到 ,获得积分10
4秒前
烤了那只蠢鸡完成签到,获得积分10
4秒前
6秒前
平淡雅阳完成签到,获得积分10
6秒前
pwq发布了新的文献求助10
9秒前
nini发布了新的文献求助10
9秒前
一一完成签到,获得积分10
10秒前
汉堡包应助威武小猫咪采纳,获得10
13秒前
13秒前
17秒前
菜鸡游泳发布了新的文献求助10
18秒前
SiO2完成签到 ,获得积分0
19秒前
19秒前
君寻完成签到 ,获得积分10
20秒前
20秒前
20秒前
小蘑菇应助babalababa采纳,获得10
21秒前
21秒前
22秒前
中标发布了新的文献求助10
24秒前
24秒前
24秒前
公西凝芙发布了新的文献求助10
26秒前
28秒前
29秒前
29秒前
29秒前
Royal耗子完成签到,获得积分10
31秒前
haobhaobhaob发布了新的文献求助10
32秒前
33秒前
科研通AI5应助豆豆可采纳,获得10
33秒前
34秒前
Royal耗子发布了新的文献求助10
34秒前
慕青应助诺贝尔一直讲采纳,获得30
35秒前
公西凝芙完成签到,获得积分10
35秒前
科研通AI6应助弎夜采纳,获得30
35秒前
langqi发布了新的文献求助10
36秒前
Miya发布了新的文献求助30
36秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4610031
求助须知:如何正确求助?哪些是违规求助? 4016179
关于积分的说明 12434575
捐赠科研通 3697585
什么是DOI,文献DOI怎么找? 2038909
邀请新用户注册赠送积分活动 1071843
科研通“疑难数据库(出版商)”最低求助积分说明 955542