A new data processing strategy combined with a convolutional neural network for rapid and accurate prediction of geographical classifications of natural products

可追溯性 计算机科学 卷积神经网络 指纹(计算) 人工智能 数据挖掘 人工神经网络 领域(数学) 模式识别(心理学) 机器学习 数学 软件工程 纯数学
作者
Bingwen Zhou,Mengke Jia,Fan Zhang,Jin Qi,Boyang Yu
出处
期刊:Chemometrics and Intelligent Laboratory Systems [Elsevier BV]
卷期号:227: 104594-104594 被引量:4
标识
DOI:10.1016/j.chemolab.2022.104594
摘要

Geographic traceability has attracted attention in the field of food and natural products. It is related to security and quality and is inseparable from the vital interests of producers and consumers. A conventional method for geographic traceability is to combine chemical fingerprints with chemometrics. However, insufficient information is provided from a single detection system for high accuracy traceability. This study uses 'Two-Elements-Multi-Information-Fingerprints' (TEMIF) to obtain more fingerprint information, implemented on Cnidium monnieri (L.) Cuss from six different provinces in eastern China. Due to differing polarities, the chemical compositions of the sample can be divided into weak polar parts and strong polar parts. Different chromatographic systems were used to detect different polar compositions. All chromatograms obtained were deconstructed and reconstructed into TEMIF. The frequently used classification models have poor performance in such complex data. Therefore, a convolutional neural network (CNN) was used to process TEMIF. As a result, the more information carried on the fingerprint, the higher is the model's classification accuracy. The accuracy of the CNN model was much higher than that of the traditional machine learning model. Under the same data, support vector machine has the highest accuracy of 62.67% among the three traditional machine learning models, while CNN model can reach 99.80%. On the premise of enriching chemical information, our strategy greatly improved accuracy and made the geographic traceability model more rapid. The online automatic geographic traceability could be realized using a combination of the model and chromatographic workstation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Kuhaku完成签到,获得积分10
刚刚
随风完成签到,获得积分20
1秒前
tianhualefei发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助30
1秒前
sonder发布了新的文献求助10
2秒前
2秒前
大气千柳发布了新的文献求助10
2秒前
林夏发布了新的文献求助10
2秒前
闪闪的又亦完成签到 ,获得积分10
2秒前
毛子涵发布了新的文献求助10
2秒前
英俊鼠标发布了新的文献求助10
2秒前
123完成签到,获得积分10
2秒前
星辰大海应助陈艳林采纳,获得10
3秒前
3秒前
3秒前
3秒前
jdjd完成签到,获得积分10
4秒前
科研通AI2S应助Mansis采纳,获得10
4秒前
鱼会淹死吗完成签到,获得积分10
4秒前
Star1983发布了新的文献求助10
4秒前
研友_ZlxxzZ发布了新的文献求助10
4秒前
李永波发布了新的文献求助10
5秒前
随风发布了新的文献求助20
5秒前
快乐的翠柏完成签到,获得积分10
5秒前
过氧化氢应助Tiffany采纳,获得10
5秒前
你要学好完成签到 ,获得积分10
6秒前
可爱的函函应助苹果蜗牛采纳,获得10
6秒前
Hello应助薛亚妮采纳,获得10
7秒前
yls发布了新的文献求助10
7秒前
是容与呀发布了新的文献求助10
8秒前
小菜鸡完成签到 ,获得积分10
8秒前
dhts应助毛子涵采纳,获得10
9秒前
景妙海完成签到 ,获得积分10
10秒前
11秒前
11秒前
wuxiaobei给wuxiaobei的求助进行了留言
12秒前
wanci应助qweasdzxcqwe采纳,获得10
12秒前
14秒前
寒冷的天亦完成签到,获得积分10
14秒前
一昂杨完成签到,获得积分10
14秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986641
求助须知:如何正确求助?哪些是违规求助? 3529109
关于积分的说明 11243520
捐赠科研通 3267633
什么是DOI,文献DOI怎么找? 1803801
邀请新用户注册赠送积分活动 881207
科研通“疑难数据库(出版商)”最低求助积分说明 808582