离子
离子运输机
钠
化学物理
离子通道
材料科学
化学
纳米技术
生物化学
受体
有机化学
冶金
作者
L. Dai,Kecheng Guan,Zhaohuan Mai,Fang Shang,Shuzhen Zhao,Mengyang Hu,Zhan Li,Pengfei Zhang,Ping Xu,Hideto Matsuyama
出处
期刊:Nano Letters
[American Chemical Society]
日期:2024-10-16
卷期号:24 (43): 13686-13694
标识
DOI:10.1021/acs.nanolett.4c03650
摘要
Nanoconfined interlayer channels in two-dimensional (2D) laminates are promising for the construction of novel permselective membranes. Controlling the interlayer spacing and modifying the interlayer chemical microenvironment are effective for high-efficiency separation. However, manipulating ion-diffusion energy barriers in confined channels is challenging, and their role in selective water–ion transport is unclear. This study engineered sodium-ion traps (SITs) in confined graphene oxide (GO) interlayer channels by incorporating N-phenylaza-15-crown-5 (NPCE) to regulate the ion-diffusion energy barriers. Partial reduction of GO enhanced membrane stability and enabled precise adjustment of interlayer spacing, while the addition of NPCE further constricted the free space and entrapped sodium ions by increasing their transport energy barriers. The optimized membrane with NPCE-dominated SITs achieved mono/monovalent-ion efficient sieving (K+/Na+ ≈ 10.2, and Li+/Na+ ≈ 6.7) and rejection of Na2SO4 (∼99.0%) and NaCl (∼90.0%), while maintaining stable performance for >1500 h. The findings provide new insights into manipulating transport energy barriers and modifying other 2D material laminates.
科研通智能强力驱动
Strongly Powered by AbleSci AI