Development and validation of a CT-based deep learning radiomics signature to predict lymph node metastasis in oropharyngeal squamous cell carcinoma: a multicenter study

接收机工作特性 随机森林 无线电技术 人工智能 特征选择 计算机科学 医学 支持向量机 降维 决策树 淋巴结 放射科 校准 特征(语言学) 机器学习 内科学 统计 数学 语言学 哲学
作者
Tianzi Jiang,Hexiang Wang,Jie Li,Tongyu Wang,Xiaohong Zhan,Jie Wang,Li Wang,Pei Nie,Shiyu Cui,Xinyao Zhao,Dapeng Hao
出处
期刊:Dentomaxillofacial Radiology [British Institute of Radiology]
标识
DOI:10.1093/dmfr/twae051
摘要

Abstract Objectives Lymph node metastasis (LNM) is a pivotal determinant that influences the treatment strategies and prognosis for oropharyngeal squamous cell carcinoma (OPSCC) patients. This study aims to establish and verify a deep learning (DL) radiomics model for the prediction of LNM in OPSCCs using contrast-enhanced computed tomography (CECT). Methods A retrospective analysis included 279 OPSCC patients from three institutions. CECT images were used for handcrafted (HCR) and DL feature extraction. Dimensionality reduction for HCR features used recursive feature elimination and least absolute shrinkage and selection operator algorithms, whereas DL feature dimensionality reduction used variance-threshold and recursive feature elimination algorithms. Radiomics signatures were constructed using support vector machine, decision tree, random forest, k-nearest neighbor, gaussian naive bayes classifiers and light gradient boosting machine. A combined model was then constructed using the screened DL, HCR, and clinical features. The area under the receiver operating characteristic curve (AUC) served to quantify the model's performance, and calibration curves were utilized to assess its calibration. Results The combined model exhibited robust performance, achieving AUC values of 0.909 (95% CI: 0.861-0.957) in the training cohort, 0.884 (95% CI: 0.800-0.968) in the internal validation cohort, and 0.865 (95% CI: 0.791-0.939) in the external validation cohort. It outperformed both the clinical model and best-performing radiomics model. Moreover, calibration was deemed satisfactory. Conclusions The combined model based on CECT demonstrates the potential to predict LNM in OPSCCs preoperatively, offering a valuable tool for more precise and tailored treatment strategies. Advances in knowledge This study presents a novel combined model integrating clinical factors with deep learning radiomics, significantly enhancing preoperative LNM prediction in OPSCC.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
醉熏的初雪完成签到,获得积分10
1秒前
可乐发布了新的文献求助10
2秒前
3秒前
现代火车发布了新的文献求助10
3秒前
4秒前
罗怀蕊发布了新的文献求助10
8秒前
卟乖完成签到,获得积分10
9秒前
Hello应助现代火车采纳,获得10
9秒前
11秒前
Tink完成签到,获得积分10
14秒前
脑洞疼应助张努力采纳,获得10
16秒前
17秒前
17秒前
8848k纯帅完成签到,获得积分10
19秒前
20秒前
22秒前
wayne发布了新的文献求助10
22秒前
followZ完成签到,获得积分10
23秒前
青衍应助dusjsj采纳,获得10
25秒前
Ariok发布了新的文献求助10
25秒前
轻松完成签到,获得积分10
26秒前
李健的小迷弟应助xelloss采纳,获得10
27秒前
27秒前
sun完成签到,获得积分10
27秒前
阳光萝完成签到,获得积分10
27秒前
华仔应助zwbo采纳,获得10
28秒前
Su糖铺子完成签到,获得积分10
28秒前
YJ完成签到,获得积分10
29秒前
29秒前
kiriya发布了新的文献求助10
29秒前
ll发布了新的文献求助10
30秒前
dusjsj完成签到,获得积分20
31秒前
Apple发布了新的文献求助20
32秒前
32秒前
32秒前
罗怀蕊完成签到,获得积分10
33秒前
33秒前
小鹏哥完成签到,获得积分10
33秒前
卡萨卡萨完成签到,获得积分10
35秒前
35秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3152014
求助须知:如何正确求助?哪些是违规求助? 2803297
关于积分的说明 7853218
捐赠科研通 2460777
什么是DOI,文献DOI怎么找? 1310024
科研通“疑难数据库(出版商)”最低求助积分说明 629087
版权声明 601765