亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Development and validation of a CT-based deep learning radiomics signature to predict lymph node metastasis in oropharyngeal squamous cell carcinoma: a multicenter study

接收机工作特性 随机森林 无线电技术 人工智能 特征选择 计算机科学 医学 支持向量机 降维 决策树 淋巴结 放射科 校准 特征(语言学) 机器学习 内科学 统计 数学 语言学 哲学
作者
Tianzi Jiang,Hexiang Wang,Jie Li,Tongyu Wang,Xiaohong Zhan,Jingqun Wang,Ning Wang,Pei Nie,Shiyu Cui,Xindi Zhao,Dapeng Hao
出处
期刊:Dentomaxillofacial Radiology [Oxford University Press]
标识
DOI:10.1093/dmfr/twae051
摘要

Abstract Objectives Lymph node metastasis (LNM) is a pivotal determinant that influences the treatment strategies and prognosis for oropharyngeal squamous cell carcinoma (OPSCC) patients. This study aims to establish and verify a deep learning (DL) radiomics model for the prediction of LNM in OPSCCs using contrast-enhanced computed tomography (CECT). Methods A retrospective analysis included 279 OPSCC patients from 3 institutions. CECT images were used for handcrafted (HCR) and DL feature extraction. Dimensionality reduction for HCR features used recursive feature elimination (RFE) and least absolute shrinkage and selection operator (LASSO) algorithms, whereas DL feature dimensionality reduction used variance-threshold and RFE algorithms. Radiomics signatures were constructed using six machine learning classifiers. A combined model was then constructed using the screened DL, HCR, and clinical features. The area under the receiver operating characteristic curve (AUC) served to quantify the model’s performance, and calibration curves were utilized to assess its calibration. Results The combined model exhibited robust performance, achieving AUC values of 0.909 (95% CI, 0.861-0.957) in the training cohort, 0.884 (95% CI, 0.800-0.968) in the internal validation cohort, and 0.865 (95% CI, 0.791-0.939) in the external validation cohort. It outperformed both the clinical model and best-performing radiomics model. Moreover, calibration was deemed satisfactory. Conclusions The combined model based on CECT demonstrates the potential to predict LNM in OPSCCs preoperatively, offering a valuable tool for more precise and tailored treatment strategies. Advances in knowledge This study presents a novel combined model integrating clinical factors with DL radiomics, significantly enhancing preoperative LNM prediction in OPSCC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
22秒前
28秒前
文献菜鸟完成签到 ,获得积分10
32秒前
44秒前
Michelangelo_微风完成签到,获得积分10
45秒前
48秒前
整齐的萝发布了新的文献求助10
54秒前
54秒前
火星上的天思完成签到,获得积分10
56秒前
隐形曼青应助Ultraman45采纳,获得10
56秒前
2311发布了新的文献求助30
58秒前
赝品也烂漫完成签到,获得积分10
1分钟前
Asher完成签到,获得积分10
1分钟前
1分钟前
小胡爱科研完成签到 ,获得积分10
1分钟前
003完成签到,获得积分10
1分钟前
1分钟前
duan完成签到 ,获得积分10
1分钟前
2311完成签到 ,获得积分20
1分钟前
2311关注了科研通微信公众号
1分钟前
1分钟前
1分钟前
kento完成签到,获得积分0
1分钟前
fang完成签到,获得积分10
1分钟前
Tumumu完成签到,获得积分10
1分钟前
Li完成签到,获得积分10
1分钟前
fang发布了新的文献求助10
1分钟前
科目三应助科研通管家采纳,获得10
1分钟前
orixero应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
共享精神应助科研通管家采纳,获得10
1分钟前
科目三应助科研通管家采纳,获得10
1分钟前
Jasper应助科研通管家采纳,获得10
1分钟前
1分钟前
英俊的铭应助lf采纳,获得10
1分钟前
2分钟前
lf发布了新的文献求助10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
Alice应助Magali采纳,获得80
2分钟前
2分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3976643
求助须知:如何正确求助?哪些是违规求助? 3520735
关于积分的说明 11204613
捐赠科研通 3257484
什么是DOI,文献DOI怎么找? 1798716
邀请新用户注册赠送积分活动 877897
科研通“疑难数据库(出版商)”最低求助积分说明 806613