Development and validation of a CT-based deep learning radiomics signature to predict lymph node metastasis in oropharyngeal squamous cell carcinoma: a multicenter study

接收机工作特性 随机森林 无线电技术 人工智能 特征选择 计算机科学 医学 支持向量机 降维 决策树 淋巴结 放射科 校准 特征(语言学) 机器学习 内科学 统计 数学 语言学 哲学
作者
Tianzi Jiang,Hexiang Wang,Jie Li,Tongyu Wang,Xiaohong Zhan,Jingqun Wang,Ning Wang,Pei Nie,Shiyu Cui,Xindi Zhao,Dapeng Hao
出处
期刊:Dentomaxillofacial Radiology [British Institute of Radiology]
标识
DOI:10.1093/dmfr/twae051
摘要

Abstract Objectives Lymph node metastasis (LNM) is a pivotal determinant that influences the treatment strategies and prognosis for oropharyngeal squamous cell carcinoma (OPSCC) patients. This study aims to establish and verify a deep learning (DL) radiomics model for the prediction of LNM in OPSCCs using contrast-enhanced computed tomography (CECT). Methods A retrospective analysis included 279 OPSCC patients from 3 institutions. CECT images were used for handcrafted (HCR) and DL feature extraction. Dimensionality reduction for HCR features used recursive feature elimination (RFE) and least absolute shrinkage and selection operator (LASSO) algorithms, whereas DL feature dimensionality reduction used variance-threshold and RFE algorithms. Radiomics signatures were constructed using six machine learning classifiers. A combined model was then constructed using the screened DL, HCR, and clinical features. The area under the receiver operating characteristic curve (AUC) served to quantify the model’s performance, and calibration curves were utilized to assess its calibration. Results The combined model exhibited robust performance, achieving AUC values of 0.909 (95% CI, 0.861-0.957) in the training cohort, 0.884 (95% CI, 0.800-0.968) in the internal validation cohort, and 0.865 (95% CI, 0.791-0.939) in the external validation cohort. It outperformed both the clinical model and best-performing radiomics model. Moreover, calibration was deemed satisfactory. Conclusions The combined model based on CECT demonstrates the potential to predict LNM in OPSCCs preoperatively, offering a valuable tool for more precise and tailored treatment strategies. Advances in knowledge This study presents a novel combined model integrating clinical factors with DL radiomics, significantly enhancing preoperative LNM prediction in OPSCC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bkagyin应助scuter采纳,获得10
1秒前
思源应助Genius采纳,获得10
1秒前
啵啵龙完成签到,获得积分10
2秒前
3秒前
酷波er应助HUYAOWEI采纳,获得10
4秒前
乐乐应助HUYAOWEI采纳,获得10
4秒前
大个应助HUYAOWEI采纳,获得10
4秒前
科研通AI6应助HUYAOWEI采纳,获得10
4秒前
小二郎应助HUYAOWEI采纳,获得10
4秒前
深情安青应助HUYAOWEI采纳,获得10
4秒前
科研通AI2S应助HUYAOWEI采纳,获得10
4秒前
SciGPT应助HUYAOWEI采纳,获得10
4秒前
小蘑菇应助HUYAOWEI采纳,获得10
4秒前
wxyshare应助HUYAOWEI采纳,获得20
4秒前
zzzzzzzzzzzz完成签到,获得积分10
4秒前
爆爆完成签到,获得积分10
5秒前
5秒前
可爱藏今发布了新的文献求助10
5秒前
Sy发布了新的文献求助10
5秒前
6秒前
6秒前
7秒前
开朗楼房完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助10
8秒前
8秒前
zzxr完成签到,获得积分10
9秒前
濛嘻嘻发布了新的文献求助10
9秒前
12秒前
12秒前
13秒前
14秒前
15秒前
香蕉觅云应助小蚂蚁采纳,获得10
16秒前
louis dai完成签到,获得积分10
16秒前
orixero应助儒雅的忆翠采纳,获得10
17秒前
Lucas应助疯狂的大闸蟹采纳,获得10
17秒前
17秒前
infinite完成签到,获得积分10
18秒前
隐形曼青应助义气的擎汉采纳,获得10
18秒前
damianjoker11完成签到,获得积分10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5594302
求助须知:如何正确求助?哪些是违规求助? 4679974
关于积分的说明 14812661
捐赠科研通 4646837
什么是DOI,文献DOI怎么找? 2534882
邀请新用户注册赠送积分活动 1502862
关于科研通互助平台的介绍 1469497