Development and validation of a CT-based deep learning radiomics signature to predict lymph node metastasis in oropharyngeal squamous cell carcinoma: a multicenter study

接收机工作特性 随机森林 无线电技术 人工智能 特征选择 计算机科学 医学 支持向量机 降维 决策树 淋巴结 放射科 校准 特征(语言学) 机器学习 内科学 统计 数学 语言学 哲学
作者
Tianzi Jiang,Hexiang Wang,Jie Li,Tongyu Wang,Xiaohong Zhan,Jingqun Wang,Ning Wang,Pei Nie,Shiyu Cui,Xindi Zhao,Dapeng Hao
出处
期刊:Dentomaxillofacial Radiology [Oxford University Press]
标识
DOI:10.1093/dmfr/twae051
摘要

Abstract Objectives Lymph node metastasis (LNM) is a pivotal determinant that influences the treatment strategies and prognosis for oropharyngeal squamous cell carcinoma (OPSCC) patients. This study aims to establish and verify a deep learning (DL) radiomics model for the prediction of LNM in OPSCCs using contrast-enhanced computed tomography (CECT). Methods A retrospective analysis included 279 OPSCC patients from 3 institutions. CECT images were used for handcrafted (HCR) and DL feature extraction. Dimensionality reduction for HCR features used recursive feature elimination (RFE) and least absolute shrinkage and selection operator (LASSO) algorithms, whereas DL feature dimensionality reduction used variance-threshold and RFE algorithms. Radiomics signatures were constructed using six machine learning classifiers. A combined model was then constructed using the screened DL, HCR, and clinical features. The area under the receiver operating characteristic curve (AUC) served to quantify the model’s performance, and calibration curves were utilized to assess its calibration. Results The combined model exhibited robust performance, achieving AUC values of 0.909 (95% CI, 0.861-0.957) in the training cohort, 0.884 (95% CI, 0.800-0.968) in the internal validation cohort, and 0.865 (95% CI, 0.791-0.939) in the external validation cohort. It outperformed both the clinical model and best-performing radiomics model. Moreover, calibration was deemed satisfactory. Conclusions The combined model based on CECT demonstrates the potential to predict LNM in OPSCCs preoperatively, offering a valuable tool for more precise and tailored treatment strategies. Advances in knowledge This study presents a novel combined model integrating clinical factors with DL radiomics, significantly enhancing preoperative LNM prediction in OPSCC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CodeCraft应助NOIR4LU采纳,获得10
刚刚
刚刚
程大海完成签到,获得积分10
1秒前
2秒前
Orange应助123采纳,获得10
2秒前
2秒前
gaowei完成签到,获得积分10
3秒前
3秒前
木之尹发布了新的文献求助10
4秒前
眰恦完成签到,获得积分10
4秒前
蛋挞完成签到,获得积分10
4秒前
5秒前
阿蓉啊完成签到 ,获得积分10
7秒前
sunshine完成签到,获得积分10
8秒前
8秒前
丘比特应助zcg采纳,获得30
9秒前
9秒前
傲震完成签到,获得积分10
9秒前
Xumeiling发布了新的文献求助10
10秒前
开朗依霜发布了新的文献求助30
10秒前
10秒前
12秒前
123完成签到,获得积分10
13秒前
13秒前
14秒前
今后应助v小飞侠101采纳,获得10
15秒前
英姑应助开朗依霜采纳,获得30
15秒前
16秒前
chenyichi发布了新的文献求助10
16秒前
科研通AI2S应助健忘的曼卉采纳,获得10
17秒前
冯尔蓝完成签到,获得积分10
17秒前
单纯南珍发布了新的文献求助10
17秒前
小蘑菇应助anna521212采纳,获得50
18秒前
MY完成签到,获得积分10
18秒前
123发布了新的文献求助10
19秒前
liujiaqi完成签到,获得积分10
19秒前
丹丹发布了新的文献求助10
19秒前
绍成完成签到 ,获得积分10
19秒前
坦率灵槐应助伶俐的血茗采纳,获得10
19秒前
pierniao完成签到,获得积分10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5305475
求助须知:如何正确求助?哪些是违规求助? 4451562
关于积分的说明 13852455
捐赠科研通 4339004
什么是DOI,文献DOI怎么找? 2382268
邀请新用户注册赠送积分活动 1377388
关于科研通互助平台的介绍 1344904