Development and validation of a CT-based deep learning radiomics signature to predict lymph node metastasis in oropharyngeal squamous cell carcinoma: a multicenter study

接收机工作特性 随机森林 无线电技术 人工智能 特征选择 计算机科学 医学 支持向量机 降维 决策树 淋巴结 放射科 校准 特征(语言学) 机器学习 内科学 统计 数学 语言学 哲学
作者
Tianzi Jiang,Hexiang Wang,Jie Li,Tongyu Wang,Xiaohong Zhan,Jingqun Wang,Ning Wang,Pei Nie,Shiyu Cui,Xindi Zhao,Dapeng Hao
出处
期刊:Dentomaxillofacial Radiology [British Institute of Radiology]
标识
DOI:10.1093/dmfr/twae051
摘要

Abstract Objectives Lymph node metastasis (LNM) is a pivotal determinant that influences the treatment strategies and prognosis for oropharyngeal squamous cell carcinoma (OPSCC) patients. This study aims to establish and verify a deep learning (DL) radiomics model for the prediction of LNM in OPSCCs using contrast-enhanced computed tomography (CECT). Methods A retrospective analysis included 279 OPSCC patients from 3 institutions. CECT images were used for handcrafted (HCR) and DL feature extraction. Dimensionality reduction for HCR features used recursive feature elimination (RFE) and least absolute shrinkage and selection operator (LASSO) algorithms, whereas DL feature dimensionality reduction used variance-threshold and RFE algorithms. Radiomics signatures were constructed using six machine learning classifiers. A combined model was then constructed using the screened DL, HCR, and clinical features. The area under the receiver operating characteristic curve (AUC) served to quantify the model’s performance, and calibration curves were utilized to assess its calibration. Results The combined model exhibited robust performance, achieving AUC values of 0.909 (95% CI, 0.861-0.957) in the training cohort, 0.884 (95% CI, 0.800-0.968) in the internal validation cohort, and 0.865 (95% CI, 0.791-0.939) in the external validation cohort. It outperformed both the clinical model and best-performing radiomics model. Moreover, calibration was deemed satisfactory. Conclusions The combined model based on CECT demonstrates the potential to predict LNM in OPSCCs preoperatively, offering a valuable tool for more precise and tailored treatment strategies. Advances in knowledge This study presents a novel combined model integrating clinical factors with DL radiomics, significantly enhancing preoperative LNM prediction in OPSCC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
meng完成签到 ,获得积分10
1秒前
Lucas应助落后钢铁侠采纳,获得10
1秒前
2秒前
2秒前
2秒前
3秒前
心灵尔安发布了新的文献求助10
4秒前
5秒前
段儿完成签到,获得积分10
6秒前
ATOM发布了新的文献求助30
6秒前
7秒前
ZJX完成签到,获得积分10
7秒前
jin发布了新的文献求助10
7秒前
7788完成签到,获得积分10
8秒前
8秒前
zzihy完成签到,获得积分10
9秒前
Areeha完成签到,获得积分10
9秒前
范不上完成签到,获得积分10
9秒前
9秒前
诚兴完成签到,获得积分10
9秒前
luoyue完成签到,获得积分10
10秒前
苹果大娘完成签到,获得积分20
10秒前
务实的不悔发布了新的文献求助100
10秒前
10秒前
浮游应助QAQ小白采纳,获得10
11秒前
CipherSage应助haaay采纳,获得10
11秒前
11秒前
怕孤单的惜梦完成签到,获得积分10
11秒前
11秒前
小吴完成签到,获得积分10
12秒前
MOMO完成签到 ,获得积分10
12秒前
ttt完成签到,获得积分10
12秒前
13秒前
13秒前
苹果大娘发布了新的文献求助10
13秒前
13秒前
14秒前
14秒前
14秒前
李健应助qwepirt采纳,获得10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5505397
求助须知:如何正确求助?哪些是违规求助? 4600897
关于积分的说明 14474868
捐赠科研通 4535091
什么是DOI,文献DOI怎么找? 2485112
邀请新用户注册赠送积分活动 1468204
关于科研通互助平台的介绍 1440675