亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Prediction of axillary lymph node metastasis using a magnetic resonance imaging radiomics model of invasive breast cancer primary tumor

医学 接收机工作特性 磁共振成像 乳腺癌 逻辑回归 试验装置 无线电技术 放射科 核医学 人工智能 癌症 内科学 计算机科学
作者
Wenjing Shi,Yingshi Su,Rui Zhang,Wei Xia,Zhenqiang Lian,Ning Mao,Yanyu Wang,Anqin Zhang,Xin Gao,Yan Zhang
出处
期刊:Cancer Imaging [Springer Nature]
卷期号:24 (1)
标识
DOI:10.1186/s40644-024-00771-y
摘要

Abstract Background This study investigated the clinical value of breast magnetic resonance imaging (MRI) radiomics for predicting axillary lymph node metastasis (ALNM) and to compare the discriminative abilities of different combinations of MRI sequences. Methods This study included 141 patients diagnosed with invasive breast cancer from two centers (center 1: n = 101, center 2: n = 40). Patients from center 1 were randomly divided into training set and test set 1. Patients from center 2 were assigned to the test set 2. All participants underwent preoperative MRI, and four distinct MRI sequences were obtained. The volume of interest (VOI) of the breast tumor was delineated on the dynamic contrast-enhanced (DCE) postcontrast phase 2 sequence, and the VOIs of other sequences were adjusted when required. Subsequently, radiomics features were extracted from the VOIs using an open-source package. Both single- and multisequence radiomics models were constructed using the logistic regression method in the training set. The area under the receiver operating characteristic curve (AUC), accuracy, sensitivity, specificity, and precision of the radiomics model for the test set 1 and test set 2 were calculated. Finally, the diagnostic performance of each model was compared with the diagnostic level of junior and senior radiologists. Results The single-sequence ALNM classifier derived from DCE postcontrast phase 1 had the best performance for both test set 1 (AUC = 0.891) and test set 2 (AUC = 0.619). The best-performing multisequence ALNM classifiers for both test set 1 (AUC = 0.910) and test set 2 (AUC = 0.717) were generated from DCE postcontrast phase 1, T2-weighted imaging, and diffusion-weighted imaging single-sequence ALNM classifiers. Both had a higher diagnostic level than the junior and senior radiologists. Conclusions The combination of DCE postcontrast phase 1, T2-weighted imaging, and diffusion-weighted imaging radiomics features had the best performance in predicting ALNM from breast cancer. Our study presents a well-performing and noninvasive tool for ALNM prediction in patients with breast cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
13秒前
斯文的难破完成签到 ,获得积分10
14秒前
小路完成签到,获得积分10
16秒前
28秒前
NexusExplorer应助可靠的采萱采纳,获得10
28秒前
小鱼发布了新的文献求助10
33秒前
可靠的采萱完成签到,获得积分10
37秒前
华仔应助二牛采纳,获得10
37秒前
Wei完成签到 ,获得积分10
39秒前
乐乐乐乐乐乐应助孙太阳采纳,获得10
44秒前
45秒前
Fiona完成签到 ,获得积分10
51秒前
DDD1235发布了新的文献求助10
51秒前
摸鱼大王在摸鱼完成签到 ,获得积分10
54秒前
1分钟前
无花果应助科研通管家采纳,获得10
1分钟前
Jasper应助科研通管家采纳,获得10
1分钟前
田様应助科研通管家采纳,获得10
1分钟前
小丿丫丿丫完成签到 ,获得积分10
1分钟前
wang完成签到 ,获得积分10
1分钟前
1分钟前
乐乐乐乐乐乐应助蝈蝈采纳,获得10
1分钟前
ppw完成签到,获得积分10
1分钟前
子桑南完成签到,获得积分10
1分钟前
昏睡的醉山完成签到 ,获得积分10
1分钟前
1分钟前
无花果应助心睡采纳,获得10
1分钟前
dogontree发布了新的文献求助10
1分钟前
JavedAli完成签到,获得积分10
1分钟前
1分钟前
心睡完成签到,获得积分10
1分钟前
心睡发布了新的文献求助10
2分钟前
iwaking完成签到,获得积分10
2分钟前
2分钟前
煎炒焖煮炸培根完成签到,获得积分10
2分钟前
隐形问萍发布了新的文献求助80
2分钟前
科研通AI2S应助AYY采纳,获得10
2分钟前
2分钟前
斯文败类应助Aira采纳,获得10
2分钟前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
麻省总医院内科手册(原著第8版) (美)马克S.萨巴蒂尼 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
Pearson Edxecel IGCSE English Language B 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3142628
求助须知:如何正确求助?哪些是违规求助? 2793538
关于积分的说明 7806806
捐赠科研通 2449789
什么是DOI,文献DOI怎么找? 1303444
科研通“疑难数据库(出版商)”最低求助积分说明 626917
版权声明 601314