Development and external validation of a novel modality for rapid recognition of aortic dissection based on peripheral pulse oximetry waveforms

脉搏血氧仪 医学 接收机工作特性 胸痛 波形 主动脉夹层 曲线下面积 队列 放射科 心脏病学 内科学 主动脉 计算机科学 麻醉 电信 雷达
作者
Jing-Chao Luo,Yijie Zhang,Ying Niu,Minghao Luo,Feng Sun,Guo-Wei Tu,Chen Zhao,Siying Zhou,Guorong Gu,Xu‐feng Cheng,Yu‐wei Zhao,Wanting Zhou,Zhe Luo
出处
期刊:Medical Physics [Wiley]
标识
DOI:10.1002/mp.17405
摘要

Abstract Background Aortic dissection (AD) is a life‐threatening cardiovascular emergency that is often misdiagnosed as other chest pain conditions. Physiologically, AD may cause abnormalities in peripheral blood flow, which can be detected using pulse oximetry waveforms. Purpose This study aimed to assess the feasibility of identifying AD based on pulse oximetry waveforms and to highlight the key waveform features that play a crucial role in this diagnostic method. Methods This prospective study employed high‐risk chest pain cohorts from two emergency departments. The initial cohort was enriched with AD patients ( n = 258, 47% AD) for model development, while the second cohort consisted of chest pain patients awaiting angiography ( n = 71, 25% AD) and was used for external validation. Pulse oximetry waveforms from the four extremities were collected for each patient. After data preprocessing, a recognition model based on the random forest algorithm was trained using patients' gender, age, and waveform difference features extracted from the pulse oximetry waveforms. The performance of the model was evaluated using receiver operating characteristic (ROC) curve analysis and decision curve analysis (DCA). The importance of features was also assessed using Shapley Value and Gini importance. Results The model demonstrated strong performance in identifying AD in both the training and external validation sets. In the training set, the model achieved an area under the ROC curve of 0.979 (95% CI: 0.961–0.990), sensitivity of 0.918 (95% CI: 0.873–0.955), specificity of 0.949 (95% CI: 0.912–0.985), and accuracy of 0.933 (95% CI: 0.904–0.959). In the external validation set, the model attained an area under the ROC curve of 0.855 (95% CI: 0.720–0.965), sensitivity of 0.889 (95% CI: 0.722–1.000), specificity of 0.698 (95% CI: 0.566–0.812), and accuracy of 0.794 (95% CI: 0.672–0.878). Decision curve analysis (DCA) further showed that the model provided a substantial net benefit for identifying AD. The median mean and median variance of the four limbs' signals were the most influential features in the recognition model. Conclusions This study demonstrated the feasibility and strong performance of identifying AD based on peripheral pulse oximetry waveforms in high‐risk chest pain populations in the emergency setting. The findings also provided valuable insights for future human fluid dynamics simulations to elucidate the impact of AD on blood flow in greater detail.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小蓝完成签到,获得积分10
刚刚
悦耳代亦发布了新的文献求助30
1秒前
2秒前
Amon发布了新的文献求助10
2秒前
海聪天宇完成签到,获得积分10
3秒前
adu关注了科研通微信公众号
4秒前
4秒前
专一的书兰完成签到 ,获得积分10
5秒前
桃桃完成签到,获得积分20
5秒前
wangli应助淡淡菠萝采纳,获得10
5秒前
尧九发布了新的文献求助10
6秒前
7秒前
黑球完成签到,获得积分10
9秒前
9秒前
9秒前
zxr发布了新的文献求助10
9秒前
bxb完成签到,获得积分10
9秒前
Steam完成签到 ,获得积分10
10秒前
makabaka完成签到,获得积分10
10秒前
11秒前
14秒前
14秒前
可一完成签到,获得积分20
15秒前
汤t发布了新的文献求助10
15秒前
Hou发布了新的文献求助20
15秒前
16秒前
myf完成签到 ,获得积分10
17秒前
十一发布了新的文献求助10
18秒前
ZG发布了新的文献求助10
18秒前
Z01完成签到,获得积分10
18秒前
18秒前
18秒前
Annie完成签到,获得积分10
19秒前
nmamtf发布了新的文献求助20
19秒前
21秒前
科研通AI2S应助科研通管家采纳,获得10
21秒前
21秒前
丸子圆圆应助科研通管家采纳,获得10
21秒前
22秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3153422
求助须知:如何正确求助?哪些是违规求助? 2804660
关于积分的说明 7860714
捐赠科研通 2462621
什么是DOI,文献DOI怎么找? 1310839
科研通“疑难数据库(出版商)”最低求助积分说明 629400
版权声明 601794