Development and external validation of a novel modality for rapid recognition of aortic dissection based on peripheral pulse oximetry waveforms

脉搏血氧仪 医学 接收机工作特性 胸痛 波形 主动脉夹层 曲线下面积 队列 放射科 心脏病学 内科学 主动脉 计算机科学 麻醉 电信 雷达
作者
Jing-Chao Luo,Yijie Zhang,Ying Niu,Minghao Luo,Feng Sun,Guo-Wei Tu,Chen Zhao,Siying Zhou,Guorong Gu,Xu‐feng Cheng,Yu‐wei Zhao,Wanting Zhou,Zhe Luo
出处
期刊:Medical Physics [Wiley]
标识
DOI:10.1002/mp.17405
摘要

Abstract Background Aortic dissection (AD) is a life‐threatening cardiovascular emergency that is often misdiagnosed as other chest pain conditions. Physiologically, AD may cause abnormalities in peripheral blood flow, which can be detected using pulse oximetry waveforms. Purpose This study aimed to assess the feasibility of identifying AD based on pulse oximetry waveforms and to highlight the key waveform features that play a crucial role in this diagnostic method. Methods This prospective study employed high‐risk chest pain cohorts from two emergency departments. The initial cohort was enriched with AD patients ( n = 258, 47% AD) for model development, while the second cohort consisted of chest pain patients awaiting angiography ( n = 71, 25% AD) and was used for external validation. Pulse oximetry waveforms from the four extremities were collected for each patient. After data preprocessing, a recognition model based on the random forest algorithm was trained using patients' gender, age, and waveform difference features extracted from the pulse oximetry waveforms. The performance of the model was evaluated using receiver operating characteristic (ROC) curve analysis and decision curve analysis (DCA). The importance of features was also assessed using Shapley Value and Gini importance. Results The model demonstrated strong performance in identifying AD in both the training and external validation sets. In the training set, the model achieved an area under the ROC curve of 0.979 (95% CI: 0.961–0.990), sensitivity of 0.918 (95% CI: 0.873–0.955), specificity of 0.949 (95% CI: 0.912–0.985), and accuracy of 0.933 (95% CI: 0.904–0.959). In the external validation set, the model attained an area under the ROC curve of 0.855 (95% CI: 0.720–0.965), sensitivity of 0.889 (95% CI: 0.722–1.000), specificity of 0.698 (95% CI: 0.566–0.812), and accuracy of 0.794 (95% CI: 0.672–0.878). Decision curve analysis (DCA) further showed that the model provided a substantial net benefit for identifying AD. The median mean and median variance of the four limbs' signals were the most influential features in the recognition model. Conclusions This study demonstrated the feasibility and strong performance of identifying AD based on peripheral pulse oximetry waveforms in high‐risk chest pain populations in the emergency setting. The findings also provided valuable insights for future human fluid dynamics simulations to elucidate the impact of AD on blood flow in greater detail.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
禹映安发布了新的文献求助30
刚刚
大圈圈完成签到,获得积分10
1秒前
1xsz完成签到,获得积分10
1秒前
TangWang完成签到 ,获得积分10
1秒前
小徐801完成签到,获得积分10
1秒前
1秒前
2秒前
Ryan发布了新的文献求助10
3秒前
3秒前
从容不弱完成签到,获得积分10
3秒前
3秒前
wan应助cong666采纳,获得10
4秒前
yeyeye发布了新的文献求助10
4秒前
qibing Gu完成签到,获得积分20
4秒前
彩色的老五完成签到,获得积分10
4秒前
帅气的小鸭子完成签到,获得积分10
4秒前
OnionJJ完成签到,获得积分10
5秒前
Nash完成签到,获得积分10
5秒前
Kuhaku完成签到,获得积分10
5秒前
Jess完成签到,获得积分10
5秒前
tom完成签到,获得积分10
5秒前
RA000完成签到,获得积分10
6秒前
cc完成签到 ,获得积分10
6秒前
怕黑鲂发布了新的文献求助50
7秒前
科研通AI6应助zzj512682701采纳,获得10
7秒前
SKSK发布了新的文献求助10
7秒前
HHHHH完成签到,获得积分10
7秒前
文静的如娆完成签到,获得积分10
7秒前
典雅的觅儿完成签到,获得积分10
8秒前
科研的神龙猫完成签到,获得积分10
8秒前
8秒前
si发布了新的文献求助10
8秒前
guoguoguo完成签到,获得积分20
9秒前
小靳发布了新的文献求助10
9秒前
cc完成签到 ,获得积分10
9秒前
科研通AI6应助失眠的煎饼采纳,获得10
9秒前
科研通AI6应助宋宋采纳,获得10
10秒前
hd完成签到,获得积分10
11秒前
豆沙卷完成签到,获得积分10
11秒前
脑洞疼应助RoKi采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5510498
求助须知:如何正确求助?哪些是违规求助? 4605134
关于积分的说明 14492967
捐赠科研通 4540342
什么是DOI,文献DOI怎么找? 2487940
邀请新用户注册赠送积分活动 1470152
关于科研通互助平台的介绍 1442632