双金属片
钴
铜
电化学
材料科学
双氯芬酸
多孔性
碳纤维
兴奋剂
无机化学
化学工程
化学
电极
冶金
金属
复合材料
生物化学
光电子学
物理化学
复合数
工程类
作者
Yuanyuan Dong,Tian-Ze Li,Hui Su,Xiaochen Zhang,Jianjiao Zhang
标识
DOI:10.1016/j.jhazmat.2024.135281
摘要
Diclofenac (DCF) is a non-steroidal anti-inflammatory drug (NSAID), and its overuse poses a potential threat to human health and the aquatic environment, designing high-efficiency electrocatalysts for DCF detection is urgent. Herein, cobalt-copper bimetallic selenides embedded in nitrogen-doped porous carbon nanocubes (CoCuSe@NC) were elaborately designed via one-step in situ selenization of bimetallic CoCu-MOF. The chemical constituents and micromorphology of CoCuSe@NC composites can be further optimized by precisely regulating the selenization process and the doping ratio of bimetal in MOF precursor. As an electrocatalyst, CoCuSe@NC was proved to be highly efficient in electrochemical sensing of DCF with a broad linear range of 0.1-400 µmol/L and a detection limit of 0.024 µmol/L. This was attributed to the synergistic advantages between the heterogeneous structures, which produced more electrochemically active sites, effectively shortened the electron transport path, and improved electrocatalytic performance. Consequently, the constructed sensor exhibits high sensitivity, remarkable stability and applicability, and in particular can selectively detect DCF from other structurally similar coexisting analogs, resulting from the unique metal chelation ability. This work paves the way for designing effective bimetallic selenide electrocatalysts and exploring their applications in DCF electrochemical sensing.
科研通智能强力驱动
Strongly Powered by AbleSci AI