已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Using deep learning to detect atherosclerotic plaques on carotid ultrasound images in the UK Biobank

医学 生命银行 血管内超声 放射科 超声波 颈动脉 心脏病学 内科学 生物信息学 生物
作者
M Omarov,Saman Doroodgar Jorshery,Rainer Malik,Vineet K. Raghu,Martin Dichgans,Christopher D. Anderson,Marios K. Georgakis
出处
期刊:European Heart Journal [Oxford University Press]
卷期号:45 (Supplement_1)
标识
DOI:10.1093/eurheartj/ehae666.3470
摘要

Abstract Background Atherosclerosis is the main underlying cause of cardiovascular disease (CVD). Existing CVD risk assessment tools do not consider the burden of subclinical atherosclerosis. The presence of carotid plaques on carotid ultrasound is a well-known marker of subclinical atherosclerosis. The accumulation of population-scale data on the presence of atherosclerotic plaques, along with deep phenotyping, can allow not only to address the effectiveness of carotid ultrasound in routine clinical practice, but to shed light on the biology of atherosclerosis development. Purpose To develop an effective deep learning model for plaque detection in carotid ultrasound images in the UK Biobank. Methods We used 680 carotid ultrasound images with manually annotated plaques to train a deep learning model employing the YOLOv8 architecture. Different augmentation techniques were used to increase the generalizability of the model. The developed model was applied to automatically detect plaques in raw ultrasound images from 19,507 UK Biobank participants. Logistic and Cox regression were used to explore the associations of plaque presence and number as predicted by the model with conventional CVD risk factors and the risk of future CVD events over follow-up. To explore the genetic architecture of subclinical atherosclerosis, we conducted a genome-wide association study (GWAS) on plaque presence, followed by meta-analysis with data from the CHARGE Consortium. Results Our plaque detection model achieved high classification metrics of accuracy, sensitivity, and specificity (89.3%, 89.5%, and 89.2%, respectively) and detected atherosclerotic plaques in 44% of UK Biobank participants. As expected, plaques were more common among men than women and their prevalence increased linearly with age. Both plaque presence and number of plaques were correlated with conventional CVD risk factors including diabetes, hypertension, and hyperlipidemia, and showed strong associations with future risk of incident CVD events (Hazard Ratio for plaque presence: 1.48 [95%CI: 1.21-1.82], for 2 plaques or more: 1.65, [95% CI: 1.28-2.13]). Incorporating plaque-derived phenotypes minimally altered the C-index of the time-to-event model. GWAS meta-analysis of carotid plaque presence revealed 5 previously known loci, as well as a significant locus including the LPA gene that had not previously been associated with carotid plaque. Conclusion We have developed and implemented an efficient plaque detection model to data from the UK Biobank, which holds significant promise for studying atherosclerosis at a population-wide scale through integration with multiomics data and electronic health records.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
万能图书馆应助Su采纳,获得10
6秒前
百宝驳回了Jasper应助
8秒前
eriphin完成签到,获得积分10
8秒前
打打应助渴望者采纳,获得10
11秒前
畅快的发箍完成签到,获得积分10
11秒前
姜姗完成签到 ,获得积分10
13秒前
lzy完成签到,获得积分10
15秒前
15秒前
16秒前
在巨人的肩膀上眺望远方完成签到,获得积分10
23秒前
amanda完成签到,获得积分10
25秒前
芒果完成签到 ,获得积分10
28秒前
28秒前
30秒前
30秒前
yyds应助科研通管家采纳,获得160
33秒前
顾矜应助科研通管家采纳,获得10
33秒前
爆米花应助科研通管家采纳,获得10
34秒前
反恐分子应助科研通管家采纳,获得10
34秒前
情怀应助科研通管家采纳,获得10
34秒前
34秒前
呼延水云发布了新的文献求助10
35秒前
37秒前
Broadway Zhang完成签到,获得积分10
37秒前
兼听则明应助cai采纳,获得50
38秒前
乐空思应助淡定秀发采纳,获得20
40秒前
情怀应助不爱胡萝卜采纳,获得10
42秒前
爱吃橙子完成签到 ,获得积分10
44秒前
111完成签到 ,获得积分10
45秒前
45秒前
大学生完成签到 ,获得积分10
46秒前
酷波er应助SCIDING采纳,获得10
49秒前
51秒前
百宝发布了新的文献求助10
52秒前
淡定秀发完成签到,获得积分10
53秒前
wanci应助amanda采纳,获得30
57秒前
57秒前
美丽的若云完成签到 ,获得积分10
59秒前
土豆你个西红柿完成签到 ,获得积分10
1分钟前
无尾熊完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
理系総合のための生命科学 第5版〜分子・細胞・個体から知る“生命"のしくみ 800
普遍生物学: 物理に宿る生命、生命の紡ぐ物理 800
花の香りの秘密―遺伝子情報から機能性まで 800
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5606500
求助须知:如何正确求助?哪些是违规求助? 4690888
关于积分的说明 14866511
捐赠科研通 4706081
什么是DOI,文献DOI怎么找? 2542717
邀请新用户注册赠送积分活动 1508129
关于科研通互助平台的介绍 1472276