Using deep learning to detect atherosclerotic plaques on carotid ultrasound images in the UK Biobank

医学 生命银行 血管内超声 放射科 超声波 颈动脉 心脏病学 内科学 生物信息学 生物
作者
M Omarov,Saman Doroodgar Jorshery,Rainer Malik,Vineet K. Raghu,Martin Dichgans,Christopher D. Anderson,Marios K. Georgakis
出处
期刊:European Heart Journal [Oxford University Press]
卷期号:45 (Supplement_1)
标识
DOI:10.1093/eurheartj/ehae666.3470
摘要

Abstract Background Atherosclerosis is the main underlying cause of cardiovascular disease (CVD). Existing CVD risk assessment tools do not consider the burden of subclinical atherosclerosis. The presence of carotid plaques on carotid ultrasound is a well-known marker of subclinical atherosclerosis. The accumulation of population-scale data on the presence of atherosclerotic plaques, along with deep phenotyping, can allow not only to address the effectiveness of carotid ultrasound in routine clinical practice, but to shed light on the biology of atherosclerosis development. Purpose To develop an effective deep learning model for plaque detection in carotid ultrasound images in the UK Biobank. Methods We used 680 carotid ultrasound images with manually annotated plaques to train a deep learning model employing the YOLOv8 architecture. Different augmentation techniques were used to increase the generalizability of the model. The developed model was applied to automatically detect plaques in raw ultrasound images from 19,507 UK Biobank participants. Logistic and Cox regression were used to explore the associations of plaque presence and number as predicted by the model with conventional CVD risk factors and the risk of future CVD events over follow-up. To explore the genetic architecture of subclinical atherosclerosis, we conducted a genome-wide association study (GWAS) on plaque presence, followed by meta-analysis with data from the CHARGE Consortium. Results Our plaque detection model achieved high classification metrics of accuracy, sensitivity, and specificity (89.3%, 89.5%, and 89.2%, respectively) and detected atherosclerotic plaques in 44% of UK Biobank participants. As expected, plaques were more common among men than women and their prevalence increased linearly with age. Both plaque presence and number of plaques were correlated with conventional CVD risk factors including diabetes, hypertension, and hyperlipidemia, and showed strong associations with future risk of incident CVD events (Hazard Ratio for plaque presence: 1.48 [95%CI: 1.21-1.82], for 2 plaques or more: 1.65, [95% CI: 1.28-2.13]). Incorporating plaque-derived phenotypes minimally altered the C-index of the time-to-event model. GWAS meta-analysis of carotid plaque presence revealed 5 previously known loci, as well as a significant locus including the LPA gene that had not previously been associated with carotid plaque. Conclusion We have developed and implemented an efficient plaque detection model to data from the UK Biobank, which holds significant promise for studying atherosclerosis at a population-wide scale through integration with multiomics data and electronic health records.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
蘑菇应助三块石头采纳,获得10
刚刚
量子星尘发布了新的文献求助10
1秒前
1秒前
Kotori完成签到,获得积分10
1秒前
1秒前
慕青应助一只小羊采纳,获得10
2秒前
小六发布了新的文献求助10
2秒前
王玥发布了新的文献求助10
3秒前
Twonej应助iiiau采纳,获得30
3秒前
林淳完成签到,获得积分10
3秒前
毛毛虫发布了新的文献求助10
3秒前
4秒前
蓝天应助涨知识ing采纳,获得10
4秒前
4秒前
老年发布了新的文献求助10
4秒前
ding应助果汁采纳,获得10
4秒前
海的呼唤发布了新的文献求助10
4秒前
jhw发布了新的文献求助10
5秒前
圆锥香蕉应助失眠夏山采纳,获得20
5秒前
6秒前
Xhhaai应助花生油炒花生米采纳,获得10
7秒前
7秒前
李海翔完成签到,获得积分10
8秒前
自觉思萱发布了新的文献求助10
8秒前
8秒前
顾矜应助实验菜菜君采纳,获得20
9秒前
R沫完成签到,获得积分10
9秒前
gu发布了新的文献求助10
9秒前
蓝天应助FEN采纳,获得10
10秒前
Lee发布了新的文献求助10
10秒前
10秒前
大眼完成签到 ,获得积分10
12秒前
12秒前
邢智超完成签到 ,获得积分10
13秒前
斯文败类应助漫画采纳,获得80
13秒前
兴奋棒球完成签到 ,获得积分10
13秒前
量子星尘发布了新的文献求助10
14秒前
爱如少年完成签到,获得积分10
14秒前
14秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5784155
求助须知:如何正确求助?哪些是违规求助? 5680888
关于积分的说明 15463131
捐赠科研通 4913434
什么是DOI,文献DOI怎么找? 2644642
邀请新用户注册赠送积分活动 1592485
关于科研通互助平台的介绍 1547106