Electronic and mechanical properties of η-Cu6Sn5 doped by Ni: A first-principles study

材料科学 电子结构 弹性模量 兴奋剂 各向异性 超单元 原子轨道 Atom(片上系统) 凝聚态物理 结晶学 剪切模量 复合材料 电子 光电子学 光学 雷雨 海洋学 物理 地质学 量子力学 嵌入式系统 化学 计算机科学
作者
Jianhua Sheng,Jian Zhao,Biao Wang,Jikang Yan
出处
期刊:Materials today communications [Elsevier]
卷期号:40: 110051-110051
标识
DOI:10.1016/j.mtcomm.2024.110051
摘要

In this paper, based on the crystallographic characteristics of η-Cu6Sn5, a 1×1×5 supercell was constructed, and Ni atom was doped into each of the eight Cu2 sites respectively. The electrical and mechanical properties of η-Cu6Sn5 doped with Ni atom at Cu2 site were calculated by first principles method. The single-crystal elastic constants and poly-crystalline elastic moduli were acquired by using Voigt-Reuss-Hill approximations. The elastic anisotropies of the doping systems were characterized by a three-dimensional (3D) surface constructions and two-dimensional (2D) plane projections. The results show that the doping of Ni can reduce the elastic anisotropy of η-Cu6Sn5. The most significant decrease in elastic anisotropy is observed when Ni is doped at the Ni-1 position in η-Cu6Sn5. The doping of Ni can also alter the fracture toughness of η-Cu6Sn5. Adding Ni to some Cu2 sites can increase the shear resistance of η-Cu6Sn5. Through electronic structure calculations, it is found that the doping of Ni alters the electronic structure and stability of η-Cu6Sn5. Specifically, Ni-d orbitals hybridize with Sn-p orbitals, which in turn increases the peak value near −1.54 eV. When Ni is doped at the Ni-3 position, the stability of η-Cu6Sn5 increases the most; conversely, when Ni is doped at the Ni-1 position, the stability of η-Cu6Sn5 decreases the most.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
miyamoto完成签到,获得积分20
刚刚
rrrr发布了新的文献求助10
1秒前
zhenglingying完成签到,获得积分10
1秒前
XX完成签到,获得积分10
1秒前
巅峰小学生完成签到,获得积分20
2秒前
超级翠应助wuran采纳,获得10
2秒前
扶桑发布了新的文献求助10
4秒前
领导范儿应助myyang采纳,获得10
4秒前
Owen应助单薄怡采纳,获得30
4秒前
舸宇发布了新的文献求助10
4秒前
孔雀翎发布了新的文献求助10
5秒前
俊逸的代曼完成签到,获得积分10
5秒前
精明柜子应助美好的觅云采纳,获得100
6秒前
蔡徐坤发布了新的文献求助30
6秒前
6秒前
6秒前
欢喜的丹寒完成签到,获得积分20
6秒前
7秒前
Biohacking完成签到,获得积分10
7秒前
shim完成签到,获得积分10
7秒前
7秒前
7秒前
LL完成签到,获得积分10
7秒前
水本无忧87完成签到,获得积分10
8秒前
8秒前
科研通AI6应助myyang采纳,获得10
9秒前
JHHHH完成签到,获得积分10
10秒前
10秒前
赘婿应助小霖采纳,获得10
10秒前
11秒前
赘婿应助tcf采纳,获得10
12秒前
科研通AI6应助tcf采纳,获得10
12秒前
可爱的函函应助tcf采纳,获得10
12秒前
12秒前
研友_VZG7GZ应助tcf采纳,获得10
12秒前
orixero应助tcf采纳,获得10
12秒前
12秒前
标致无心发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Biotechnology Engineering 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5629915
求助须知:如何正确求助?哪些是违规求助? 4721053
关于积分的说明 14971551
捐赠科研通 4787872
什么是DOI,文献DOI怎么找? 2556612
邀请新用户注册赠送积分活动 1517713
关于科研通互助平台的介绍 1478302