FC-YOLO: an aircraft skin defect detection algorithm based on multi-scale collaborative feature fusion

最小边界框 比例(比率) 特征(语言学) 融合 计算机科学 骨干网 跳跃式监视 理论(学习稳定性) 人工智能 功能(生物学) 算法 模式识别(心理学) 图像(数学) 机器学习 物理 生物 进化生物学 计算机网络 量子力学 语言学 哲学
作者
Wei Zhang,Jiyuan Liu,Zhiqi Yan,Minghang Zhao,Xuyun Fu,Hengjia Zhu
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (11): 115405-115405 被引量:1
标识
DOI:10.1088/1361-6501/ad6bad
摘要

Abstract Aircraft skin defects pose a threat to the safety and airworthiness of the aircraft. The front line of engineering has requirements of high precision and stable defect detection, which cannot be met by existing deep learning methods, due to conflicting information between multi-scale features. Herein, a Fine-Coordinated YOLO (FC-YOLO) algorithm is proposed to detect aircraft skin defects. Firstly, the ELAN-C module with Coordinate & Channel Attention mechanism is applied to the backbone network to enhance multi-scale detection precision. Secondly, the Adaptive-Path Aggregation Network structure is proposed to make features containing more information by adding a shortcut weighted by the Adaptively Spatial Feature Fusion (ASFF) module. The ASFF adaptively allocates the weights of features with different sizes to reduce the inconsistency of features between different levels during feature fusion to improve detection precision. Finally, the SCYLLA-IoU loss function is introduced to calculate the directional loss between the bounding box and the ground truth box to elevate the stability of the training. Experiments are executed with a self-constructed ASD-DET dataset and the public NEU-DET dataset. Results show that the mAP of FC-YOLO is improved by 3.1% and 2.7% compared to that of the original YOLOv7 on the ASD-DET dataset and the NEU-DET dataset. In addition, on the ASD-DET dataset and NEU-DET dataset, the mAP of FC-YOLO was higher than that of YOLOv8, RT-DETR by 1.4%, 1.6% and 2.2%, 3.8%, respectively. By which, it is shown that the proposed FC-YOLO algorithm is promising for the future automatic visual inspection of aircraft skin.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cheng完成签到,获得积分10
刚刚
刚刚
1秒前
一投就中发布了新的文献求助10
2秒前
刘柳发布了新的文献求助10
2秒前
顺利的蛋挞关注了科研通微信公众号
3秒前
Juvianne发布了新的文献求助10
4秒前
4秒前
4秒前
无辜的丹雪应助惠1采纳,获得30
5秒前
5秒前
CipherSage应助111采纳,获得10
6秒前
Owen应助111采纳,获得10
6秒前
甜蜜寄文发布了新的文献求助10
6秒前
6秒前
guangshuang发布了新的文献求助10
7秒前
慕青应助xc采纳,获得30
7秒前
韩修杰发布了新的文献求助10
8秒前
8秒前
lyl发布了新的文献求助10
9秒前
9秒前
coin完成签到,获得积分10
9秒前
呆一起完成签到,获得积分10
10秒前
10秒前
Hiiiiii完成签到,获得积分10
10秒前
10秒前
10秒前
SciGPT应助聪慧若风采纳,获得10
10秒前
11秒前
zwl发布了新的文献求助10
12秒前
朴素剑心发布了新的文献求助10
12秒前
Magic1987发布了新的文献求助30
12秒前
13秒前
13秒前
科研民工完成签到,获得积分10
13秒前
13秒前
古德day发布了新的文献求助10
14秒前
等风来LYY完成签到,获得积分10
14秒前
15秒前
guangshuang完成签到,获得积分10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5642103
求助须知:如何正确求助?哪些是违规求助? 4758150
关于积分的说明 15016411
捐赠科研通 4800600
什么是DOI,文献DOI怎么找? 2566140
邀请新用户注册赠送积分活动 1524244
关于科研通互助平台的介绍 1483901