亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

FC-YOLO: an aircraft skin defect detection algorithm based on multi-scale collaborative feature fusion

最小边界框 比例(比率) 特征(语言学) 融合 计算机科学 骨干网 跳跃式监视 理论(学习稳定性) 人工智能 功能(生物学) 算法 模式识别(心理学) 图像(数学) 机器学习 物理 生物 进化生物学 哲学 量子力学 语言学 计算机网络
作者
Wei Zhang,Jiyuan Liu,Zhiqi Yan,Minghang Zhao,Xuyun Fu,Hengjia Zhu
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (11): 115405-115405 被引量:1
标识
DOI:10.1088/1361-6501/ad6bad
摘要

Abstract Aircraft skin defects pose a threat to the safety and airworthiness of the aircraft. The front line of engineering has requirements of high precision and stable defect detection, which cannot be met by existing deep learning methods, due to conflicting information between multi-scale features. Herein, a Fine-Coordinated YOLO (FC-YOLO) algorithm is proposed to detect aircraft skin defects. Firstly, the ELAN-C module with Coordinate & Channel Attention mechanism is applied to the backbone network to enhance multi-scale detection precision. Secondly, the Adaptive-Path Aggregation Network structure is proposed to make features containing more information by adding a shortcut weighted by the Adaptively Spatial Feature Fusion (ASFF) module. The ASFF adaptively allocates the weights of features with different sizes to reduce the inconsistency of features between different levels during feature fusion to improve detection precision. Finally, the SCYLLA-IoU loss function is introduced to calculate the directional loss between the bounding box and the ground truth box to elevate the stability of the training. Experiments are executed with a self-constructed ASD-DET dataset and the public NEU-DET dataset. Results show that the mAP of FC-YOLO is improved by 3.1% and 2.7% compared to that of the original YOLOv7 on the ASD-DET dataset and the NEU-DET dataset. In addition, on the ASD-DET dataset and NEU-DET dataset, the mAP of FC-YOLO was higher than that of YOLOv8, RT-DETR by 1.4%, 1.6% and 2.2%, 3.8%, respectively. By which, it is shown that the proposed FC-YOLO algorithm is promising for the future automatic visual inspection of aircraft skin.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
firesquall完成签到,获得积分10
刚刚
顺利凡蕾发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
9秒前
顺利凡蕾完成签到,获得积分10
17秒前
binyao2024完成签到,获得积分10
18秒前
20秒前
Owen应助科研通管家采纳,获得10
25秒前
28秒前
1分钟前
1分钟前
oldcat96发布了新的文献求助10
1分钟前
1分钟前
思源应助oldcat96采纳,获得10
1分钟前
猕猴桃发布了新的文献求助30
1分钟前
情怀应助lsq采纳,获得10
1分钟前
1分钟前
lsq发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
华仔应助毅毅采纳,获得30
1分钟前
2分钟前
yx_cheng应助科研通管家采纳,获得10
2分钟前
yx_cheng应助科研通管家采纳,获得10
2分钟前
希望天下0贩的0应助wyx采纳,获得10
2分钟前
oldcat96发布了新的文献求助10
2分钟前
紧张的书本完成签到,获得积分20
2分钟前
研友_VZG7GZ应助紧张的书本采纳,获得10
2分钟前
myg123完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
RAIN发布了新的文献求助10
3分钟前
wyx发布了新的文献求助10
3分钟前
李健的小迷弟应助bababiba采纳,获得10
3分钟前
3分钟前
追三完成签到 ,获得积分10
3分钟前
大个应助RAIN采纳,获得10
3分钟前
碳酸芙兰完成签到,获得积分10
3分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
毅毅发布了新的文献求助30
3分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4008109
求助须知:如何正确求助?哪些是违规求助? 3547893
关于积分的说明 11298611
捐赠科研通 3282850
什么是DOI,文献DOI怎么找? 1810216
邀请新用户注册赠送积分活动 885957
科研通“疑难数据库(出版商)”最低求助积分说明 811188