已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

FC-YOLO: an aircraft skin defect detection algorithm based on multi-scale collaborative feature fusion

最小边界框 比例(比率) 特征(语言学) 融合 计算机科学 骨干网 跳跃式监视 理论(学习稳定性) 人工智能 功能(生物学) 算法 模式识别(心理学) 图像(数学) 机器学习 物理 生物 进化生物学 计算机网络 量子力学 语言学 哲学
作者
Wei Zhang,Jiyuan Liu,Zhiqi Yan,Minghang Zhao,Xuyun Fu,Hengjia Zhu
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (11): 115405-115405 被引量:1
标识
DOI:10.1088/1361-6501/ad6bad
摘要

Abstract Aircraft skin defects pose a threat to the safety and airworthiness of the aircraft. The front line of engineering has requirements of high precision and stable defect detection, which cannot be met by existing deep learning methods, due to conflicting information between multi-scale features. Herein, a Fine-Coordinated YOLO (FC-YOLO) algorithm is proposed to detect aircraft skin defects. Firstly, the ELAN-C module with Coordinate & Channel Attention mechanism is applied to the backbone network to enhance multi-scale detection precision. Secondly, the Adaptive-Path Aggregation Network structure is proposed to make features containing more information by adding a shortcut weighted by the Adaptively Spatial Feature Fusion (ASFF) module. The ASFF adaptively allocates the weights of features with different sizes to reduce the inconsistency of features between different levels during feature fusion to improve detection precision. Finally, the SCYLLA-IoU loss function is introduced to calculate the directional loss between the bounding box and the ground truth box to elevate the stability of the training. Experiments are executed with a self-constructed ASD-DET dataset and the public NEU-DET dataset. Results show that the mAP of FC-YOLO is improved by 3.1% and 2.7% compared to that of the original YOLOv7 on the ASD-DET dataset and the NEU-DET dataset. In addition, on the ASD-DET dataset and NEU-DET dataset, the mAP of FC-YOLO was higher than that of YOLOv8, RT-DETR by 1.4%, 1.6% and 2.2%, 3.8%, respectively. By which, it is shown that the proposed FC-YOLO algorithm is promising for the future automatic visual inspection of aircraft skin.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sxmt123456789发布了新的文献求助10
3秒前
黄豆完成签到,获得积分10
6秒前
清脆泥猴桃完成签到,获得积分10
6秒前
大男完成签到,获得积分10
9秒前
sxmt123456789完成签到,获得积分10
9秒前
风笛完成签到 ,获得积分10
9秒前
安安安安发布了新的文献求助10
11秒前
HJJHJH完成签到,获得积分10
11秒前
浮游应助科研通管家采纳,获得10
12秒前
情怀应助科研通管家采纳,获得10
12秒前
浮游应助科研通管家采纳,获得10
12秒前
思源应助科研通管家采纳,获得10
12秒前
12秒前
苹果丹烟完成签到 ,获得积分10
13秒前
15秒前
shame完成签到 ,获得积分10
17秒前
Cloris完成签到,获得积分10
22秒前
糖拌西红柿完成签到,获得积分10
23秒前
26秒前
27秒前
yy完成签到 ,获得积分10
27秒前
Ye完成签到 ,获得积分10
27秒前
28秒前
现代孤萍完成签到 ,获得积分10
29秒前
Cloris发布了新的文献求助10
31秒前
31秒前
32秒前
chaoshen发布了新的文献求助10
36秒前
37秒前
39秒前
youngyang完成签到 ,获得积分10
44秒前
dax大雄完成签到 ,获得积分10
45秒前
Michael完成签到 ,获得积分10
50秒前
51秒前
ASD完成签到,获得积分10
53秒前
Rich_WH发布了新的文献求助10
54秒前
sherry完成签到 ,获得积分10
54秒前
蓝色天空完成签到,获得积分10
56秒前
英俊的铭应助CC采纳,获得30
58秒前
午盏完成签到 ,获得积分10
58秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 901
Item Response Theory 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5426242
求助须知:如何正确求助?哪些是违规求助? 4540046
关于积分的说明 14171474
捐赠科研通 4457840
什么是DOI,文献DOI怎么找? 2444698
邀请新用户注册赠送积分活动 1435630
关于科研通互助平台的介绍 1413164