FC-YOLO: an aircraft skin defect detection algorithm based on multi-scale collaborative feature fusion

最小边界框 比例(比率) 特征(语言学) 融合 计算机科学 骨干网 跳跃式监视 理论(学习稳定性) 人工智能 功能(生物学) 算法 模式识别(心理学) 图像(数学) 机器学习 物理 生物 进化生物学 计算机网络 量子力学 语言学 哲学
作者
Wei Zhang,Jiyuan Liu,Zhiqi Yan,Minghang Zhao,Xuyun Fu,Hengjia Zhu
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (11): 115405-115405 被引量:1
标识
DOI:10.1088/1361-6501/ad6bad
摘要

Abstract Aircraft skin defects pose a threat to the safety and airworthiness of the aircraft. The front line of engineering has requirements of high precision and stable defect detection, which cannot be met by existing deep learning methods, due to conflicting information between multi-scale features. Herein, a Fine-Coordinated YOLO (FC-YOLO) algorithm is proposed to detect aircraft skin defects. Firstly, the ELAN-C module with Coordinate & Channel Attention mechanism is applied to the backbone network to enhance multi-scale detection precision. Secondly, the Adaptive-Path Aggregation Network structure is proposed to make features containing more information by adding a shortcut weighted by the Adaptively Spatial Feature Fusion (ASFF) module. The ASFF adaptively allocates the weights of features with different sizes to reduce the inconsistency of features between different levels during feature fusion to improve detection precision. Finally, the SCYLLA-IoU loss function is introduced to calculate the directional loss between the bounding box and the ground truth box to elevate the stability of the training. Experiments are executed with a self-constructed ASD-DET dataset and the public NEU-DET dataset. Results show that the mAP of FC-YOLO is improved by 3.1% and 2.7% compared to that of the original YOLOv7 on the ASD-DET dataset and the NEU-DET dataset. In addition, on the ASD-DET dataset and NEU-DET dataset, the mAP of FC-YOLO was higher than that of YOLOv8, RT-DETR by 1.4%, 1.6% and 2.2%, 3.8%, respectively. By which, it is shown that the proposed FC-YOLO algorithm is promising for the future automatic visual inspection of aircraft skin.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
果果完成签到,获得积分10
1秒前
无情墨镜完成签到,获得积分10
1秒前
2秒前
2秒前
李健应助科研废物采纳,获得10
2秒前
FIN发布了新的文献求助500
4秒前
4秒前
lmz发布了新的文献求助10
4秒前
alunying发布了新的文献求助20
5秒前
Iris发布了新的文献求助10
5秒前
5秒前
90发布了新的文献求助10
6秒前
Criminology34应助无情墨镜采纳,获得10
6秒前
科研通AI6应助芝士采纳,获得10
7秒前
fff完成签到,获得积分10
7秒前
乐观文龙完成签到,获得积分10
7秒前
8秒前
8秒前
9秒前
LikeS关注了科研通微信公众号
10秒前
10秒前
mucheng发布了新的文献求助10
11秒前
悲哀藏在现实中完成签到,获得积分10
11秒前
11秒前
天天快乐应助wang采纳,获得10
11秒前
1812完成签到,获得积分10
11秒前
科研通AI6应助1234采纳,获得10
11秒前
赵闯完成签到,获得积分10
11秒前
11秒前
12秒前
12秒前
bdJ发布了新的文献求助10
13秒前
充电宝应助gdl采纳,获得10
13秒前
13秒前
隐形曼青应助lmz采纳,获得10
14秒前
百事可爱完成签到 ,获得积分10
14秒前
wanghuan完成签到,获得积分10
16秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5649011
求助须知:如何正确求助?哪些是违规求助? 4777097
关于积分的说明 15046363
捐赠科研通 4807843
什么是DOI,文献DOI怎么找? 2571160
邀请新用户注册赠送积分活动 1527756
关于科研通互助平台的介绍 1486683