FC-YOLO: an aircraft skin defect detection algorithm based on multi-scale collaborative feature fusion

最小边界框 比例(比率) 特征(语言学) 融合 计算机科学 骨干网 跳跃式监视 理论(学习稳定性) 人工智能 功能(生物学) 算法 模式识别(心理学) 图像(数学) 机器学习 物理 生物 进化生物学 计算机网络 量子力学 语言学 哲学
作者
Wei Zhang,Jiyuan Liu,Zhiqi Yan,Minghang Zhao,Xuyun Fu,Hengjia Zhu
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (11): 115405-115405 被引量:1
标识
DOI:10.1088/1361-6501/ad6bad
摘要

Abstract Aircraft skin defects pose a threat to the safety and airworthiness of the aircraft. The front line of engineering has requirements of high precision and stable defect detection, which cannot be met by existing deep learning methods, due to conflicting information between multi-scale features. Herein, a Fine-Coordinated YOLO (FC-YOLO) algorithm is proposed to detect aircraft skin defects. Firstly, the ELAN-C module with Coordinate & Channel Attention mechanism is applied to the backbone network to enhance multi-scale detection precision. Secondly, the Adaptive-Path Aggregation Network structure is proposed to make features containing more information by adding a shortcut weighted by the Adaptively Spatial Feature Fusion (ASFF) module. The ASFF adaptively allocates the weights of features with different sizes to reduce the inconsistency of features between different levels during feature fusion to improve detection precision. Finally, the SCYLLA-IoU loss function is introduced to calculate the directional loss between the bounding box and the ground truth box to elevate the stability of the training. Experiments are executed with a self-constructed ASD-DET dataset and the public NEU-DET dataset. Results show that the mAP of FC-YOLO is improved by 3.1% and 2.7% compared to that of the original YOLOv7 on the ASD-DET dataset and the NEU-DET dataset. In addition, on the ASD-DET dataset and NEU-DET dataset, the mAP of FC-YOLO was higher than that of YOLOv8, RT-DETR by 1.4%, 1.6% and 2.2%, 3.8%, respectively. By which, it is shown that the proposed FC-YOLO algorithm is promising for the future automatic visual inspection of aircraft skin.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
taytay发布了新的文献求助10
刚刚
_hhhjhhh完成签到,获得积分10
1秒前
1秒前
lwj完成签到,获得积分10
1秒前
彭三爷完成签到 ,获得积分20
1秒前
1秒前
蓝色逍遥鱼完成签到,获得积分10
1秒前
搬石头发布了新的文献求助30
1秒前
避橙完成签到,获得积分10
2秒前
2秒前
考研的青蛙完成签到 ,获得积分10
2秒前
brd完成签到,获得积分10
3秒前
3秒前
天道酬勤发布了新的文献求助10
3秒前
温婉的香水完成签到 ,获得积分10
3秒前
NANA完成签到,获得积分10
3秒前
小鱼完成签到,获得积分10
3秒前
keplek完成签到 ,获得积分10
4秒前
彭洪泽发布了新的文献求助10
4秒前
anran完成签到 ,获得积分10
5秒前
ddiou完成签到,获得积分20
5秒前
leranlily完成签到,获得积分10
5秒前
今后应助ShawnJohn采纳,获得10
5秒前
呆二龙完成签到 ,获得积分10
6秒前
Wang完成签到,获得积分10
6秒前
6秒前
6秒前
7秒前
插线板完成签到 ,获得积分10
7秒前
7秒前
illusion完成签到,获得积分10
8秒前
菜菜完成签到,获得积分10
8秒前
寒泉完成签到,获得积分10
8秒前
starry发布了新的文献求助10
8秒前
Mm完成签到,获得积分10
9秒前
9秒前
Uranus发布了新的文献求助10
9秒前
takumii完成签到,获得积分10
10秒前
10秒前
JiangSir完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Schlieren and Shadowgraph Techniques:Visualizing Phenomena in Transparent Media 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5516727
求助须知:如何正确求助?哪些是违规求助? 4609546
关于积分的说明 14516808
捐赠科研通 4546412
什么是DOI,文献DOI怎么找? 2491188
邀请新用户注册赠送积分活动 1472886
关于科研通互助平台的介绍 1444818