FC-YOLO: an aircraft skin defect detection algorithm based on multi-scale collaborative feature fusion

最小边界框 比例(比率) 特征(语言学) 融合 计算机科学 骨干网 跳跃式监视 理论(学习稳定性) 人工智能 功能(生物学) 算法 模式识别(心理学) 图像(数学) 机器学习 物理 生物 进化生物学 哲学 量子力学 语言学 计算机网络
作者
Wei Zhang,Jiyuan Liu,Zhiqi Yan,Minghang Zhao,Xuyun Fu,Hengjia Zhu
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (11): 115405-115405 被引量:1
标识
DOI:10.1088/1361-6501/ad6bad
摘要

Abstract Aircraft skin defects pose a threat to the safety and airworthiness of the aircraft. The front line of engineering has requirements of high precision and stable defect detection, which cannot be met by existing deep learning methods, due to conflicting information between multi-scale features. Herein, a Fine-Coordinated YOLO (FC-YOLO) algorithm is proposed to detect aircraft skin defects. Firstly, the ELAN-C module with Coordinate & Channel Attention mechanism is applied to the backbone network to enhance multi-scale detection precision. Secondly, the Adaptive-Path Aggregation Network structure is proposed to make features containing more information by adding a shortcut weighted by the Adaptively Spatial Feature Fusion (ASFF) module. The ASFF adaptively allocates the weights of features with different sizes to reduce the inconsistency of features between different levels during feature fusion to improve detection precision. Finally, the SCYLLA-IoU loss function is introduced to calculate the directional loss between the bounding box and the ground truth box to elevate the stability of the training. Experiments are executed with a self-constructed ASD-DET dataset and the public NEU-DET dataset. Results show that the mAP of FC-YOLO is improved by 3.1% and 2.7% compared to that of the original YOLOv7 on the ASD-DET dataset and the NEU-DET dataset. In addition, on the ASD-DET dataset and NEU-DET dataset, the mAP of FC-YOLO was higher than that of YOLOv8, RT-DETR by 1.4%, 1.6% and 2.2%, 3.8%, respectively. By which, it is shown that the proposed FC-YOLO algorithm is promising for the future automatic visual inspection of aircraft skin.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
归仔完成签到,获得积分10
刚刚
刚刚
Orange应助李丽采纳,获得10
1秒前
认真初之发布了新的文献求助30
1秒前
王大力完成签到,获得积分10
1秒前
传奇3应助务实雪珍采纳,获得10
1秒前
刘丰铭发布了新的文献求助10
2秒前
1234完成签到,获得积分10
2秒前
BowieHuang应助震动的高烽采纳,获得10
2秒前
2秒前
自然黄豆发布了新的文献求助10
2秒前
555完成签到,获得积分20
2秒前
完美世界应助喜悦一德采纳,获得10
2秒前
yqsf789发布了新的文献求助10
2秒前
洪亭完成签到 ,获得积分10
3秒前
左左蕊完成签到 ,获得积分10
3秒前
嘉博学长完成签到,获得积分10
4秒前
4秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
万能图书馆应助edtaa采纳,获得10
4秒前
4秒前
斯文败类应助Leon采纳,获得10
5秒前
wenchong完成签到,获得积分10
5秒前
5秒前
个性小熊猫完成签到,获得积分10
6秒前
David123发布了新的文献求助10
6秒前
土土完成签到 ,获得积分10
7秒前
fhz关闭了fhz文献求助
7秒前
后陡门小学生完成签到 ,获得积分10
7秒前
7秒前
7秒前
唯心止论完成签到,获得积分10
8秒前
希望天下0贩的0应助洪亭采纳,获得10
8秒前
糖炒李子完成签到,获得积分10
8秒前
8秒前
8秒前
L山间葱发布了新的文献求助10
9秒前
yuan完成签到,获得积分10
9秒前
2R完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608504
求助须知:如何正确求助?哪些是违规求助? 4693127
关于积分的说明 14876947
捐赠科研通 4717761
什么是DOI,文献DOI怎么找? 2544250
邀请新用户注册赠送积分活动 1509316
关于科研通互助平台的介绍 1472836