Zero-Shot Discovery of High-Performance, Low-Cost Organic Battery Materials Using Machine Learning

化学 零(语言学) 电池(电) 弹丸 有机化学 热力学 哲学 语言学 物理 功率(物理)
作者
Jaehyun Park,Farshud Sorourifar,Madhav Muthyala,Abigail M. Houser,Madison R. Tuttle,Joel A. Paulson,Shiyu Zhang
出处
期刊:Journal of the American Chemical Society [American Chemical Society]
卷期号:146 (45): 31230-31239
标识
DOI:10.1021/jacs.4c11663
摘要

Organic electrode materials (OEMs), composed of abundant elements such as carbon, nitrogen, and oxygen, offer sustainable alternatives to conventional electrode materials that depend on finite metal resources. The vast structural diversity of organic compounds provides a virtually unlimited design space; however, exploring this space through Edisonian trial-and-error approaches is costly and time-consuming. In this work, we develop a new framework, SPARKLE, that combines computational chemistry, molecular generation, and machine learning to achieve zero-shot predictions of OEMs that simultaneously balance reward (specific energy), risk (solubility), and cost (synthesizability). We demonstrate that SPARKLE significantly outperforms alternative black-box machine learning algorithms on interpolation and extrapolation tasks. By deploying SPARKLE over a design space of more than 670,000 organic compounds, we identified ≈5000 novel OEM candidates. Twenty-seven of them were synthesized and fabricated into coin-cell batteries for experimental testing. Among SPARKLE-discovered OEMs, 62.9% exceeded benchmark performance metrics, representing a 3-fold improvement over OEMs selected by human intuition alone (20.8% based on six years of prior lab experience). The top-performing OEMs among the 27 candidates exhibit specific energy and cycling stability that surpass the state-of-the-art while being synthesizable at a fraction of the cost.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赵宇宙发布了新的文献求助10
刚刚
FashionBoy应助江野采纳,获得10
1秒前
hanlixuan完成签到 ,获得积分10
3秒前
Dorisxdn完成签到,获得积分10
5秒前
TTT关闭了TTT文献求助
5秒前
英俊的铭应助tomatototo采纳,获得50
5秒前
收拾收拾完成签到,获得积分10
7秒前
隐形曼青应助duduguai采纳,获得10
7秒前
乐乐应助dengzzz采纳,获得10
8秒前
8秒前
收拾收拾发布了新的文献求助50
9秒前
赵宇宙完成签到,获得积分10
9秒前
香蕉觅云应助刘球球采纳,获得10
10秒前
Cupid完成签到,获得积分10
11秒前
顾涵山发布了新的文献求助20
12秒前
灵巧安青完成签到,获得积分10
12秒前
青柠味发布了新的文献求助10
13秒前
啦啦啦发布了新的文献求助10
13秒前
14秒前
英俊的铭应助Luo采纳,获得10
14秒前
15秒前
梁子奥里给完成签到,获得积分10
16秒前
16秒前
司空豁发布了新的文献求助30
16秒前
17秒前
xiaoyang发布了新的文献求助30
17秒前
共享精神应助tutu采纳,获得10
19秒前
研友_nxV0x8发布了新的文献求助10
20秒前
LHT完成签到,获得积分10
21秒前
20231125完成签到,获得积分10
22秒前
ding应助虎帅采纳,获得10
22秒前
23秒前
23秒前
重要凝芙发布了新的文献求助10
24秒前
潇潇暮雨完成签到,获得积分10
26秒前
雨山发布了新的文献求助10
27秒前
研友_nxV0x8完成签到,获得积分10
27秒前
fzzf发布了新的文献求助10
27秒前
后知后觉发布了新的文献求助10
27秒前
29秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956369
求助须知:如何正确求助?哪些是违规求助? 3502503
关于积分的说明 11108341
捐赠科研通 3233197
什么是DOI,文献DOI怎么找? 1787199
邀请新用户注册赠送积分活动 870528
科研通“疑难数据库(出版商)”最低求助积分说明 802105