M2EF-NNs: Multimodal Multi-instance Evidence Fusion Neural Networks for Cancer Survival Prediction

人工神经网络 计算机科学 人工智能 融合 机器学习 哲学 语言学
作者
Hui Luo,Jiashuang Huang,Hengrong Ju,Tianyi Zhou,Weiping Ding
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2408.04170
摘要

Accurate cancer survival prediction is crucial for assisting clinical doctors in formulating treatment plans. Multimodal data, including histopathological images and genomic data, offer complementary and comprehensive information that can greatly enhance the accuracy of this task. However, the current methods, despite yielding promising results, suffer from two notable limitations: they do not effectively utilize global context and disregard modal uncertainty. In this study, we put forward a neural network model called M2EF-NNs, which leverages multimodal and multi-instance evidence fusion techniques for accurate cancer survival prediction. Specifically, to capture global information in the images, we use a pre-trained Vision Transformer (ViT) model to obtain patch feature embeddings of histopathological images. Then, we introduce a multimodal attention module that uses genomic embeddings as queries and learns the co-attention mapping between genomic and histopathological images to achieve an early interaction fusion of multimodal information and better capture their correlations. Subsequently, we are the first to apply the Dempster-Shafer evidence theory (DST) to cancer survival prediction. We parameterize the distribution of class probabilities using the processed multimodal features and introduce subjective logic to estimate the uncertainty associated with different modalities. By combining with the Dempster-Shafer theory, we can dynamically adjust the weights of class probabilities after multimodal fusion to achieve trusted survival prediction. Finally, Experimental validation on the TCGA datasets confirms the significant improvements achieved by our proposed method in cancer survival prediction and enhances the reliability of the model.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
所所应助龙哥哥Antony采纳,获得10
1秒前
lxaz发布了新的文献求助10
2秒前
3秒前
wsx完成签到,获得积分10
3秒前
聪慧的迎夏完成签到,获得积分10
3秒前
慕青应助我很厉害的采纳,获得10
3秒前
zj发布了新的文献求助10
4秒前
浮生发布了新的文献求助10
4秒前
听蝉完成签到 ,获得积分10
4秒前
南冥完成签到 ,获得积分10
9秒前
10秒前
Akim应助小仙鱼采纳,获得10
10秒前
botanist完成签到 ,获得积分10
11秒前
12秒前
香蕉觅云应助翊嘉采纳,获得10
13秒前
14秒前
15秒前
小人物的坚持完成签到 ,获得积分10
16秒前
谢佩奇完成签到,获得积分10
17秒前
18秒前
19秒前
yan1e完成签到 ,获得积分10
19秒前
19秒前
锌银12306发布了新的文献求助10
19秒前
cc发布了新的文献求助10
19秒前
浮生发布了新的文献求助10
21秒前
23秒前
星叶完成签到 ,获得积分10
24秒前
科研通AI2S应助发发采纳,获得10
25秒前
26秒前
小小完成签到,获得积分10
27秒前
diee发布了新的文献求助10
28秒前
28秒前
SSK完成签到 ,获得积分10
28秒前
rosen完成签到,获得积分20
29秒前
当麻完成签到,获得积分10
30秒前
30秒前
谦让初南发布了新的文献求助10
30秒前
斯文败类应助cc采纳,获得10
31秒前
东箭南金完成签到,获得积分20
31秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3484036
求助须知:如何正确求助?哪些是违规求助? 3073149
关于积分的说明 9129737
捐赠科研通 2764836
什么是DOI,文献DOI怎么找? 1517444
邀请新用户注册赠送积分活动 702119
科研通“疑难数据库(出版商)”最低求助积分说明 701009