作者
Md. Soyaeb Hasan,Asif Abdullah Khan,S. Shahzadi,Mojtaba Bagheri,Dayan Ban
摘要
Abstract In recent years, silicon‐based room temperature Terahertz (THz) detectors have become the most optimistic research area because of their high speed, low cost, and unimpeded compatibility with mainstream complementary metal‐oxide‐semiconductor (CMOS) device technologies. However, Silicon (Si) suffers from low responsivity and high noise at THz frequencies. In this review, the recent advances in Si‐based THz detectors using silicon‐on‐insulator (SOI) substrates are presented. These offer several advantages over bulk counterparts, such as reduced parasitic capacitance, enhanced electric field confinement, and improved thermal isolation. The different types of THz detectors exploiting SOI substrate, such as conventional metal‐oxide‐semiconductor field effect transistors (MOSFETs), junction‐less MOSFETs, junction‐less nanowires field effect transistors (JLNWFETs), micro‐electromechanical system (MEMS), metal‐semiconductor‐metal (MSM) structures, and single electron transistor (SET), are discussed, and their key performances in terms of responsivity, noise equivalent power (NEP), bandwidth, and dynamic range are compared. The challenges and opportunities for further improvement of SOI THz detectors, such as device scaling, integration, and modulation, are also highlighted. This review may offer compelling evidence supporting the idea that SOI THz detectors have the potential to facilitate high performance, low power consumption, and scalability—qualities essential for advancing next‐level technologies.