MobileDenseNeXt: Investigations on biomedical image classification

计算机科学 人工智能 图像(数学) 模式识别(心理学) 机器学习
作者
Ilknur Tuncer,Şengül Doğan,Türker Tuncer
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:255: 124685-124685
标识
DOI:10.1016/j.eswa.2024.124685
摘要

We are living in the information era. Therefore, intelligence-based researchers are hot-topic such as artificial intelligence. In the artificial intelligence research area, machine learning and deep learning models have frequently used to create intelligence assistants and deep learning is the shining star of the AI. Specifically, in the computer vision, numerous deep learning models have been proposed, leading to a competition between transformers and convolutional neural networks (CNNs). Since the introduction of Vision Transformers (ViT), many transformer models have been advocated for computer vision, often overshadowing CNNs. Therefore, it is crucial to propose CNNs to showcase their prowess in image classification. This research introduces a lightweight CNN named MobileDenseNeXt. The proposed MobileDenseNeXt comprises four main blocks: (i) input, (ii) main, (iii) average pooling-based downsampling, and (iv) output. This research also incorporates convolution-based residual blocks and uses a depth concatenation layer to increase the number of filters. For downsampling, an average pooling operation has been employed, similar to the original DenseNet. Furthermore, the swish activation function is utilized in the presented CNN. MobileDenseNeXt has approximately 1.4 million learnable parameters, categorizing it as a lightweight CNN model. Additionally, a deep feature engineering approach has been developed using MobileDenseNeXt, incorporating two feature extractors with global average pooling and dropout layers, along with 10 feature selectors, to demonstrate the transfer learning capabilities of MobileDenseNeXt. The recommended models achieved over 95% test classification accuracy on the used three datasets, unequivocally demonstrating the high image classification proficiency of the proposed MobileDenseNeXt. Moreover, to show general classification ability of the proposed model, MobileDenseNeXt was trained on the CIFAR10 dataset and reached 98.62% accuracy. This research not only highlights the efficiency and effectiveness of MobileDenseNeXt in biomedical image classification but also highlights the competitive potential of this model for computer vision.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
想暴富的七七完成签到,获得积分10
刚刚
在水一方完成签到 ,获得积分10
刚刚
朱洛尘完成签到 ,获得积分10
1秒前
haoyunlai完成签到,获得积分10
1秒前
孤独书南完成签到,获得积分10
3秒前
MaHongyang完成签到,获得积分10
4秒前
CipherSage应助ppapppap采纳,获得10
5秒前
asd发布了新的文献求助10
5秒前
负责以山完成签到 ,获得积分10
7秒前
8秒前
丘比特应助自然的宝贝采纳,获得10
8秒前
Youatpome完成签到,获得积分20
8秒前
10秒前
12秒前
harri完成签到,获得积分10
13秒前
13秒前
14秒前
徐旖旎完成签到,获得积分10
14秒前
14秒前
harri发布了新的文献求助10
15秒前
临时演员完成签到,获得积分10
16秒前
1108发布了新的文献求助10
16秒前
www完成签到,获得积分10
16秒前
梁婷发布了新的文献求助10
16秒前
1233330完成签到,获得积分10
17秒前
发嗲的慕蕊完成签到 ,获得积分10
18秒前
19秒前
21秒前
李爱国应助梁婷采纳,获得10
22秒前
LHM发布了新的文献求助10
25秒前
Trends完成签到 ,获得积分10
25秒前
26秒前
积极的誉完成签到,获得积分10
26秒前
东东西西完成签到,获得积分10
29秒前
WSS完成签到,获得积分10
30秒前
30秒前
今后应助糊涂的芷天采纳,获得10
30秒前
随心所欲完成签到 ,获得积分10
32秒前
迷路的南琴完成签到,获得积分10
33秒前
1108完成签到,获得积分20
33秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965976
求助须知:如何正确求助?哪些是违规求助? 3511306
关于积分的说明 11157319
捐赠科研通 3245873
什么是DOI,文献DOI怎么找? 1793215
邀请新用户注册赠送积分活动 874245
科研通“疑难数据库(出版商)”最低求助积分说明 804286