已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

MobileDenseNeXt: Investigations on biomedical image classification

计算机科学 人工智能 图像(数学) 模式识别(心理学) 机器学习
作者
Ilknur Tuncer,Şengül Doğan,Türker Tuncer
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:: 124685-124685
标识
DOI:10.1016/j.eswa.2024.124685
摘要

We are living in the information era. Therefore, intelligence-based researchers are hot-topic such as artificial intelligence. In the artificial intelligence research area, machine learning and deep learning models have frequently used to create intelligence assistants and deep learning is the shining star of the AI. Specifically, in the computer vision, numerous deep learning models have been proposed, leading to a competition between transformers and convolutional neural networks (CNNs). Since the introduction of Vision Transformers (ViT), many transformer models have been advocated for computer vision, often overshadowing CNNs. Therefore, it is crucial to propose CNNs to showcase their prowess in image classification. This research introduces a lightweight CNN named MobileDenseNeXt. The proposed MobileDenseNeXt comprises four main blocks: (i) input, (ii) main, (iii) average pooling-based downsampling, and (iv) output. This research also incorporates convolution-based residual blocks and uses a depth concatenation layer to increase the number of filters. For downsampling, an average pooling operation has been employed, similar to the original DenseNet. Furthermore, the swish activation function is utilized in the presented CNN. MobileDenseNeXt has approximately 1.4 million learnable parameters, categorizing it as a lightweight CNN model. Additionally, a deep feature engineering approach has been developed using MobileDenseNeXt, incorporating two feature extractors with global average pooling and dropout layers, along with 10 feature selectors, to demonstrate the transfer learning capabilities of MobileDenseNeXt. The recommended models achieved over 95% test classification accuracy on the used three datasets, unequivocally demonstrating the high image classification proficiency of the proposed MobileDenseNeXt. Moreover, to show general classification ability of the proposed model, MobileDenseNeXt was trained on the CIFAR10 dataset and reached 98.62% accuracy. This research not only highlights the efficiency and effectiveness of MobileDenseNeXt in biomedical image classification but also highlights the competitive potential of this model for computer vision.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
枍枫发布了新的文献求助10
刚刚
1秒前
3秒前
4秒前
子非鱼完成签到,获得积分10
6秒前
7秒前
Koi发布了新的文献求助10
7秒前
子非鱼发布了新的文献求助10
12秒前
nhq完成签到,获得积分10
14秒前
菜菜完成签到 ,获得积分10
15秒前
16秒前
123456关注了科研通微信公众号
20秒前
21秒前
动听如之完成签到 ,获得积分10
21秒前
22秒前
aike完成签到,获得积分10
22秒前
勤奋的姒完成签到 ,获得积分10
26秒前
HEIKU应助瘦瘦的寒珊采纳,获得10
27秒前
明明发布了新的文献求助10
29秒前
慕青应助杨诚采纳,获得10
29秒前
初见~应助icefrog采纳,获得50
31秒前
34秒前
38秒前
结实的半双应助文件撤销了驳回
38秒前
41秒前
Hello应助机智明辉采纳,获得10
43秒前
abc105完成签到,获得积分10
43秒前
44秒前
大个应助西瓜采纳,获得10
44秒前
44秒前
李爱国应助明明采纳,获得10
46秒前
48秒前
49秒前
jxr发布了新的文献求助10
51秒前
123456发布了新的文献求助10
51秒前
海阔天空发布了新的文献求助10
53秒前
机智明辉发布了新的文献求助10
54秒前
蓬莱塔图完成签到 ,获得积分10
56秒前
ddj完成签到 ,获得积分10
58秒前
Felicity完成签到 ,获得积分10
58秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162121
求助须知:如何正确求助?哪些是违规求助? 2813196
关于积分的说明 7899113
捐赠科研通 2472301
什么是DOI,文献DOI怎么找? 1316428
科研通“疑难数据库(出版商)”最低求助积分说明 631305
版权声明 602142