A novel method for the classification of 3D point clouds based on the improved PointNet++

点云 计算机科学 人工智能 相似性(几何) 特征(语言学) 核(代数) 联营 数据挖掘 模式识别(心理学) 图像(数学) 数学 语言学 组合数学 哲学
作者
Ziming Liu,Guoguang Li,Yongfang Wang,Bin Yan,Ruizhen Gao
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (11): 116208-116208
标识
DOI:10.1088/1361-6501/ad6e0e
摘要

Abstract In deep learning, point clouds are used as the primary input format for 3D data, which can provide detailed geometric information about objects in the original 3D space. PointNet++ is a deep learning network that uses point cloud data as an input format, which avoids the losses associated with the previous conversion of point cloud into 3D voxelization and a collection of 2D images. Although PointNet++ can directly process point cloud data in various ways, due to the disordered, irregular, and unevenly distributed nature of point cloud data, the effect of extracting point cloud features could be better. The large amount of point cloud data also leads to the training model falling into the local optimal solution, which affects the training results. In recent years, some effective methods and strategies have emerged to address these problems. In this study, three methods are proposed based on the PointNet++ network: feature similarity-based attention pooling, small kernel convolution, and diverse branch block method to improve the performance of the PointNet++ network. Experiments show that the improvement methods proposed in this paper effectively improve the feature extraction accuracy, which improves the accuracy of the PointNet++ network for classification on the ModelNet40_Normal_Resampled dataset, with an overall improvement of 1% compared with PointNet++.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无花果应助王羊补牢采纳,获得10
1秒前
1秒前
白桃小罐头完成签到,获得积分10
3秒前
SHANEE发布了新的文献求助10
4秒前
安静书雁发布了新的文献求助30
4秒前
领导范儿应助Liangyu采纳,获得10
6秒前
量子星尘发布了新的文献求助10
7秒前
淡然的书蝶完成签到,获得积分10
10秒前
研友_Z11kkZ完成签到,获得积分20
10秒前
277完成签到 ,获得积分10
12秒前
博修发布了新的文献求助10
12秒前
12秒前
12秒前
安静书雁完成签到,获得积分10
13秒前
线条应助科研通管家采纳,获得10
13秒前
Dada应助科研通管家采纳,获得30
13秒前
103921wjk完成签到,获得积分10
13秒前
赘婿应助科研通管家采纳,获得10
13秒前
科研通AI2S应助科研通管家采纳,获得10
13秒前
NL14D驳回了hz52应助
13秒前
天天快乐应助科研通管家采纳,获得10
14秒前
hi应助科研通管家采纳,获得10
14秒前
14秒前
saberLee完成签到,获得积分10
14秒前
14秒前
14秒前
缺了一口的巧克力蛋挞完成签到,获得积分10
16秒前
17秒前
枝枝完成签到 ,获得积分10
19秒前
爆米花应助嗯嗯采纳,获得10
20秒前
充电宝应助若杉采纳,获得10
23秒前
23秒前
材料若饥发布了新的文献求助50
23秒前
李ye完成签到,获得积分10
25秒前
馒头完成签到,获得积分20
26秒前
CipherSage应助独特凡松采纳,获得10
26秒前
慕青应助科研苦行僧采纳,获得20
31秒前
32秒前
随遇而安完成签到,获得积分10
33秒前
35秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961075
求助须知:如何正确求助?哪些是违规求助? 3507317
关于积分的说明 11135554
捐赠科研通 3239809
什么是DOI,文献DOI怎么找? 1790434
邀请新用户注册赠送积分活动 872380
科研通“疑难数据库(出版商)”最低求助积分说明 803150