作者
Rohan Bir Singh,Thomas H. Dohlman,Alexander R. Ivanov,Nathan Hall,Connor Ross,Tobias Elze,Joan W. Miller,Anja Lorch,Erdem Yüksel,Jia Yin,Reza Dana,Aaron Lee,Cecilia S. Lee,Leslie Hyman,Julia A. Haller,Suzann Pershing,Christina Thomas‐Virnig,Alex Miranda,Divya Srikumaran,Fasika A. Woreta,Flora Lum,Joan W. Miller,Anja Lorch
摘要
Purpose Vision loss associated with opacification of the cornea is one of the leading causes of blindness globally. However, the epidemiological data pertaining to the demographics, associated etiological causes and reduced vision in corneal opacity patients continue to be sparse. This study assesses the case frequencies, underlying etiologies, and vision outcomes in patients diagnosed with corneal opacity, in the United States. Design Retrospective cohort study Participants Patients in the IRIS® Registry (Intelligent Research in Sight) who were diagnosed with corneal opacity between January 1st, 2013, and November 30th, 2020. Methods The IRIS Registry contains demographic and clinical data of 79,887,324 patients who presented to eye clinics during the study period. We identified patients with corneal opacity using International Classification of Disease (ICD) codes (ICD-9, and -10) of "371" (corneal scar) and "H17" (corneal opacity), respectively. The analyzed data included demographic parameters included age, sex, race, ethnicity, and geographical location. We evaluated clinical data including laterality, etiology, disease descriptors, and best-corrected visual acuity (VA) up to 1 year before the onset (± 30 days), at the time of diagnosis, and at one year following diagnosis (± 30 days). Main outcome measures Case frequencies, etiology, and vision outcomes in patients diagnosed with corneal opacity. Results We identified 5,220,382 patients who were diagnosed with corneal opacity and scars using H17 (ICD-10) and 371.0 (ICD-9) codes over seven years. The case frequency of corneal opacity during the study period was 6,535 cases per 100,000 patients (6.5%). The mean age of the patients was 63.36±18.14 years and the majority were female (57.6%). In the cohort, 38.39% and 30.00% of patients had bilateral and unilateral corneal opacity, respectively. Most of the patients were White (69.13%), followed by Black or African American (6.84%), Asian (2.45%), American Indian or Alaska Native(0.34%), Native Hawaii or other Pacific Islander(0.19%). Among the patients with corneal opacity, 7.34% had Hispanic or Latino ethnicity. The primary etiologies associated with corneal opacity included corneal dystrophies (64.66%) followed by edema (18.25%), ulcer (7.78%), keratoconjunctivitis (7.18%), degeneration (5.62%), neovascularization (6.27%), and trauma (5.28%). Visual acuity of the patients significantly worsened due to corneal opacity (0.46±0.74 logMAR; ∼20/58 in Snellen) and did not improve to the baseline (0.37±0.68 logMAR, ∼20/46 in Snellen) post-management (0.43±0.77 logMAR, ∼20/54 in Snellen). The multiple linear regression analysis showed worse vision outcomes in females (compared to males), and Asian, Black or African American, and American Indian or Alaska Native (compared to White) patients. Additionally, worse vision outcomes were observed in patients with opacity associated with corneal malformation, degenerative disorders, edema, injury, and ulcer compared to those with hereditary corneal dystrophy. Conclusions Our study shows that the corneal opacity was diagnosed in 6.5% of the patients in the IRIS Registry and it was primarily associated with corneal dystrophies. The final vision outcomes in corneal opacity patients were significantly worse compared to baseline. The worse vision outcomes were associated with sociodemographic differences that might be associated with disparities in access, utilization, and care patterns.