Combining Radiomics and Autoencoders to Distinguish Benign and Malignant Breast Tumors on US Images

医学 无线电技术 乳房成像 放射科 双雷达 乳腺肿瘤 人工智能 乳腺癌 乳腺摄影术 癌症 内科学 计算机科学
作者
Zuzanna Magnuska,Rijo Roy,Moritz Palmowski,Matthias Kohlen,B. Sophia Winkler,Tatjana Pfeil,Peter Boor,Volkmar Schulz,Katja Krauss,Elmar Stickeler,Fabian Kießling
出处
期刊:Radiology [Radiological Society of North America]
卷期号:312 (3) 被引量:1
标识
DOI:10.1148/radiol.232554
摘要

Background US is clinically established for breast imaging, but its diagnostic performance depends on operator experience. Computer-assisted (real-time) image analysis may help in overcoming this limitation. Purpose To develop precise real-time-capable US-based breast tumor categorization by combining classic radiomics and autoencoder-based features from automatically localized lesions. Materials and Methods A total of 1619 B-mode US images of breast tumors were retrospectively analyzed between April 2018 and January 2024. nnU-Net was trained for lesion segmentation. Features were extracted from tumor segments, bounding boxes, and whole images using either classic radiomics, autoencoder, or both. Feature selection was performed to generate radiomics signatures, which were used to train machine learning algorithms for tumor categorization. Models were evaluated using the area under the receiver operating characteristic curve (AUC), sensitivity, and specificity and were statistically compared with histopathologically or follow-up-confirmed diagnosis. Results The model was developed on 1191 (mean age, 61 years ± 14 [SD]) female patients and externally validated on 50 (mean age, 55 years ± 15]). The development data set was divided into two parts: testing and training lesion segmentation (419 and 179 examinations) and lesion categorization (503 and 90 examinations). nnU-Net demonstrated precision and reproducibility in lesion segmentation in test set of data set 1 (median Dice score [DS]: 0.90 [IQR, 0.84-0.93];
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Buster发布了新的文献求助10
刚刚
疯大仙外向太清完成签到,获得积分10
1秒前
1秒前
华仔应助fufu采纳,获得10
2秒前
Ray完成签到,获得积分10
3秒前
菠菜应助EVE采纳,获得500
3秒前
LAIII完成签到,获得积分10
4秒前
小二郎应助遠方采纳,获得10
5秒前
高洁完成签到,获得积分10
6秒前
好好学习完成签到,获得积分10
6秒前
7秒前
11秒前
hss完成签到 ,获得积分10
11秒前
百无禁忌完成签到,获得积分10
11秒前
李大爷发布了新的文献求助10
11秒前
有情皆苦发布了新的文献求助10
14秒前
Lisa_Su_8055完成签到 ,获得积分10
15秒前
16秒前
小陈完成签到,获得积分10
18秒前
Owen应助joo采纳,获得10
19秒前
隐形曼青应助AoAoo采纳,获得10
22秒前
ding应助有情皆苦采纳,获得10
23秒前
烟花应助科研通管家采纳,获得10
23秒前
shoo应助科研通管家采纳,获得10
23秒前
星辰大海应助科研通管家采纳,获得10
23秒前
23秒前
不配.应助科研通管家采纳,获得30
23秒前
Akim应助科研通管家采纳,获得10
23秒前
23秒前
寻道图强应助科研通管家采纳,获得30
23秒前
24秒前
25秒前
一繁发布了新的文献求助10
29秒前
遠方发布了新的文献求助10
30秒前
WhiteT完成签到,获得积分10
30秒前
30秒前
31秒前
有情皆苦完成签到,获得积分10
31秒前
柯镇恶完成签到,获得积分10
31秒前
33秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3159794
求助须知:如何正确求助?哪些是违规求助? 2810676
关于积分的说明 7889157
捐赠科研通 2469817
什么是DOI,文献DOI怎么找? 1315087
科研通“疑难数据库(出版商)”最低求助积分说明 630742
版权声明 602012