已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Combining Radiomics and Autoencoders to Distinguish Benign and Malignant Breast Tumors on US Images

医学 无线电技术 乳房成像 放射科 双雷达 乳腺肿瘤 人工智能 乳腺癌 乳腺摄影术 癌症 内科学 计算机科学
作者
Zuzanna Magnuska,Rijo Roy,Moritz Palmowski,Matthias Kohlen,B. Sophia Winkler,Tatjana Pfeil,Peter Boor,Volkmar Schulz,Katja Krauss,Elmar Stickeler,Fabian Kießling
出处
期刊:Radiology [Radiological Society of North America]
卷期号:312 (3) 被引量:5
标识
DOI:10.1148/radiol.232554
摘要

Background US is clinically established for breast imaging, but its diagnostic performance depends on operator experience. Computer-assisted (real-time) image analysis may help in overcoming this limitation. Purpose To develop precise real-time-capable US-based breast tumor categorization by combining classic radiomics and autoencoder-based features from automatically localized lesions. Materials and Methods A total of 1619 B-mode US images of breast tumors were retrospectively analyzed between April 2018 and January 2024. nnU-Net was trained for lesion segmentation. Features were extracted from tumor segments, bounding boxes, and whole images using either classic radiomics, autoencoder, or both. Feature selection was performed to generate radiomics signatures, which were used to train machine learning algorithms for tumor categorization. Models were evaluated using the area under the receiver operating characteristic curve (AUC), sensitivity, and specificity and were statistically compared with histopathologically or follow-up-confirmed diagnosis. Results The model was developed on 1191 (mean age, 61 years ± 14 [SD]) female patients and externally validated on 50 (mean age, 55 years ± 15]). The development data set was divided into two parts: testing and training lesion segmentation (419 and 179 examinations) and lesion categorization (503 and 90 examinations). nnU-Net demonstrated precision and reproducibility in lesion segmentation in test set of data set 1 (median Dice score [DS]: 0.90 [IQR, 0.84-0.93];
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Steven发布了新的文献求助10
2秒前
小马甲应助大喵采纳,获得10
3秒前
3秒前
丰富钢铁侠完成签到,获得积分20
3秒前
loong发布了新的文献求助10
5秒前
5秒前
zho发布了新的文献求助10
5秒前
打打应助高大的蜡烛采纳,获得10
7秒前
7秒前
8秒前
8秒前
9秒前
AA发布了新的文献求助30
9秒前
小九九发布了新的文献求助10
10秒前
香蕉不言发布了新的文献求助10
10秒前
11秒前
然大宝发布了新的文献求助10
15秒前
15秒前
上官若男应助loong采纳,获得10
16秒前
阿氏之光完成签到,获得积分10
16秒前
19秒前
19秒前
21秒前
AA完成签到,获得积分10
22秒前
鹿茸与共发布了新的文献求助10
22秒前
陈曦发布了新的文献求助10
26秒前
Cherry发布了新的文献求助10
26秒前
26秒前
生动元蝶完成签到,获得积分10
29秒前
Steven发布了新的文献求助10
31秒前
32秒前
34秒前
35秒前
zhongu发布了新的文献求助10
36秒前
鱼生发布了新的文献求助30
38秒前
大喵发布了新的文献求助10
39秒前
闵寒珊发布了新的文献求助10
39秒前
NexusExplorer应助生动元蝶采纳,获得10
45秒前
45秒前
46秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989797
求助须知:如何正确求助?哪些是违规求助? 3531914
关于积分的说明 11255516
捐赠科研通 3270597
什么是DOI,文献DOI怎么找? 1805008
邀请新用户注册赠送积分活动 882181
科研通“疑难数据库(出版商)”最低求助积分说明 809190