PFAS-Biomolecule Interactions: Case Study Using Asclepios Nodes and Automated Workflows in KNIME for Drug Discovery and Toxicology

工作流程 药物发现 计算机科学 药品 计算生物学 药理学 生物信息学 医学 生物 数据库
作者
Konstantinos D. Papavasileiou,Andreas Tsoumanis,Panagiotis Lagarias,Panagiotis D. Kolokathis,Nikoletta-Maria Koutroumpa,Georgia Melagraki,Antreas Afantitis
出处
期刊:Methods in molecular biology 卷期号:: 393-441
标识
DOI:10.1007/978-1-0716-4003-6_19
摘要

The Asclepios suite of KNIME nodes represents an innovative solution for conducting cheminformatics and computational chemistry tasks, specifically tailored for applications in drug discovery and computational toxicology. This suite has been developed using open-source and publicly accessible software. In this chapter, we introduce and explore the Asclepios suite through the lens of a case study. This case study revolves around investigating the interactions between per- and polyfluorinated alkyl substances (PFAS) and biomolecules, such as nuclear receptors. The objective is to characterize the potential toxicity of PFAS and gain insights into their chemical mode of action at the molecular level. The Asclepios KNIME nodes have been designed as versatile tools capable of addressing a wide range of computational toxicology challenges. Furthermore, they can be adapted and customized to accomodate the specific needs of individual users, spanning various domains such as nanoinformatics, biomedical research, and other related applications. This chapter provides an in-depth examination of the technical underpinnings and foundations of these tools. It is accompanied by a practical case study that demonstrates the utilization of Asclepios nodes in a computational toxicology investigation. This showcases the extendable functionalities that can be applied in diverse computational chemistry contexts. By the end of this chapter, we aim for readers to have a comprehensive understanding of the effectiveness of the Asclepios node functions. These functions hold significant potential for enhancing a wide spectrum of cheminformatics applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Layli发布了新的文献求助10
1秒前
苏木完成签到,获得积分10
1秒前
馋馋完成签到,获得积分10
4秒前
5秒前
略略略发布了新的文献求助10
5秒前
石的四次方完成签到,获得积分10
7秒前
Heowikeo完成签到,获得积分10
8秒前
轻松刚发布了新的文献求助20
9秒前
QWE完成签到,获得积分10
9秒前
ding应助略略略采纳,获得10
12秒前
zzz发布了新的文献求助10
13秒前
啊水完成签到,获得积分10
13秒前
Augenstern完成签到 ,获得积分10
15秒前
小灰灰完成签到,获得积分10
16秒前
dreammaker发布了新的文献求助10
16秒前
18秒前
木子李33完成签到,获得积分20
19秒前
19秒前
受伤的绮烟完成签到,获得积分10
19秒前
旅客完成签到,获得积分10
20秒前
丘比特应助lnd采纳,获得10
21秒前
小亿发布了新的文献求助10
23秒前
SciGPT应助MY采纳,获得10
23秒前
25秒前
tent01发布了新的文献求助10
26秒前
28秒前
海亦发布了新的文献求助10
29秒前
30秒前
32秒前
33秒前
34秒前
34秒前
lnd发布了新的文献求助10
34秒前
充电宝应助Layli采纳,获得10
36秒前
36秒前
SESAME复合体完成签到,获得积分10
37秒前
37秒前
落雁沙发布了新的文献求助10
38秒前
38秒前
39秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3136234
求助须知:如何正确求助?哪些是违规求助? 2787225
关于积分的说明 7780556
捐赠科研通 2443265
什么是DOI,文献DOI怎么找? 1298990
科研通“疑难数据库(出版商)”最低求助积分说明 625299
版权声明 600870