胆固醇
发病机制
牙周炎
流出
高胆固醇
非诺贝特
炎症
医学
内科学
炎症体
胆固醇逆向转运
脂蛋白
内分泌学
体内
药理学
化学
生物
生物化学
生物技术
作者
Thi-Thao Tran,Gary Lee,Yun Hyun Huh,Kyu Hyuck Chung,S.Y. Lee,K.H. Park,Jeong Hun Kim,Min-Suk Kook,Jaeyoung Ryu,Ock‐Kyu Kim,Hyun‐Pil Lim,Jeong‐Tae Koh,Je‐Hwang Ryu
标识
DOI:10.1177/00220345241271075
摘要
Periodontitis (PD) is a common inflammatory disease known to be closely associated with metabolic disorders, particularly hyperlipidemia. In the current study, we demonstrated that hypercholesterolemia is a predisposing factor in the development of PD. Logistic regression analysis revealed a strong positive correlation between PD and dyslipidemia. Data from in vivo (PD mouse model subjected to a high cholesterol diet) and in vitro (cholesterol treatment of gingival fibroblasts [GFs]) experiments showed that excess cholesterol influx into GFs potentially contributes to periodontal inflammation and, subsequently, alveolar bone erosion. Additionally, we compared the protective efficacies of cholesterol-lowering drugs with their different modes of action against PD pathogenesis in mice. Among the cholesterol-lowering drugs we tested, fenofibrate exerted the most protective effect against PD pathogenesis due to an increased level of high-density lipoprotein cholesterol, a lipoprotein involved in cholesterol efflux from cells and reverse cholesterol transport. Indeed, cholesterol efflux was suppressed during PD progression by downregulation of the apoA-I binding protein (APOA1BP) expression in inflamed GFs. We also demonstrated that the overexpression of APOA1BP efficiently regulated periodontal inflammation and the subsequent alveolar bone loss by inducing cholesterol efflux. Our collective findings highlight the potential utility of currently available cholesterol-lowering medications for the mitigation of PD pathogenesis. By targeting the acceleration of high-density lipoprotein-mediated cellular cholesterol efflux, a new therapeutic approach for PD may become possible.
科研通智能强力驱动
Strongly Powered by AbleSci AI