Batch channel normalized-CWGAN with Swin Transformer for imbalanced data fault diagnosis of rotating machinery

变压器 计算机科学 断层(地质) 频道(广播) 电气工程 电信 工程类 地质学 电压 地震学
作者
Wenlong Fu,Bo Zheng,Shuai Li,Weiqing Liao,Yuguang Huang,Xiaoyue Chen
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:36 (1): 016207-016207 被引量:1
标识
DOI:10.1088/1361-6501/ad8673
摘要

Abstract In real scenarios, rotating machinery is mainly operated in optimal condition, leading to fault data scarce and difficult to collect. This issue results in imbalanced data, significantly limiting the effectiveness of intelligent fault diagnosis methods. To address this issue, a novel fault diagnosis method for rotating machinery is proposed in this paper, which combines the batch channel normalized conditional wasserstein generative adversarial network (BCN-CWGAN) with Swin Transformer. Firstly, the one-dimensional vibration signal is preprocessed into two-dimensional feature images using a symmetrized dot pattern. Subsequently, self-attention mechanism and deep feature learning module constructed by DenseNet are integrated into the generator of GAN to acquire more discriminative feature information. Meanwhile, the discriminator of GAN is combined with batch channel normalization strategy, which further enhances the generalization ability. Besides, a two time-scale update rule strategy enhances training stability and convergence speed by updating model parameters at different time scales. Then, the data augmentation capability of BCN-CWGAN is used to generate high-quality fault samples to augment the imbalanced dataset. Finally, Swin Transformer is combined to achieve accurate fault diagnosis. The performance enhancement of the proposed method is verified through comparison and diagnosis results of two engineering experiments, demonstrating its substantial value for research in engineering practice. With the proposed data augmentation method, the average accuracy of A 1 , B 1 , C 1 , and D 1 datasets in experiment 1 reached 99.24%, 98.85%, 96.78%, and 96.04%, respectively. Meanwhile, the proposed method achieved the best accuracy in experiment 2.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
miaojiakun发布了新的文献求助10
刚刚
hmhu完成签到,获得积分10
刚刚
green发布了新的文献求助10
刚刚
方方发布了新的文献求助10
刚刚
梦梦发布了新的文献求助30
刚刚
1秒前
白白的鱼发布了新的文献求助10
1秒前
成帅哥完成签到,获得积分10
1秒前
1秒前
慢慢发布了新的文献求助10
1秒前
putao发布了新的文献求助10
1秒前
兴奋晓灵发布了新的文献求助10
1秒前
waoller1发布了新的文献求助10
1秒前
充电宝应助优秀的尔风采纳,获得10
2秒前
2秒前
旺旺发布了新的文献求助30
2秒前
笇采余完成签到,获得积分10
2秒前
2秒前
4秒前
6秒前
7秒前
7秒前
8秒前
小精灵发布了新的文献求助10
8秒前
shouyu29应助Huang_being采纳,获得10
8秒前
shouyu29应助Huang_being采纳,获得10
8秒前
shouyu29应助Huang_being采纳,获得10
8秒前
orixero应助简珹楚采纳,获得10
8秒前
天真不乐完成签到,获得积分10
8秒前
yang发布了新的文献求助10
9秒前
LLLL发布了新的文献求助10
9秒前
样寒发布了新的文献求助10
9秒前
科研通AI5应助green采纳,获得10
9秒前
Xu发布了新的文献求助10
10秒前
onethree发布了新的文献求助10
10秒前
10秒前
10秒前
ttt完成签到,获得积分10
10秒前
putao完成签到,获得积分10
10秒前
11秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Density Functional Theory: A Practical Introduction, 2nd Edition 840
J'AI COMBATTU POUR MAO // ANNA WANG 660
Izeltabart tapatansine - AdisInsight 600
Gay and Lesbian Asia 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3755902
求助须知:如何正确求助?哪些是违规求助? 3299200
关于积分的说明 10109040
捐赠科研通 3013805
什么是DOI,文献DOI怎么找? 1655255
邀请新用户注册赠送积分活动 789678
科研通“疑难数据库(出版商)”最低求助积分说明 753361