Batch channel normalized-CWGAN with Swin Transformer for imbalanced data fault diagnosis of rotating machinery

变压器 计算机科学 断层(地质) 频道(广播) 电气工程 电信 工程类 地质学 电压 地震学
作者
Wenlong Fu,Bo Zheng,Shuai Li,Weiqing Liao,Yuguang Huang,Xiaoyue Chen
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:36 (1): 016207-016207 被引量:1
标识
DOI:10.1088/1361-6501/ad8673
摘要

Abstract In real scenarios, rotating machinery is mainly operated in optimal condition, leading to fault data scarce and difficult to collect. This issue results in imbalanced data, significantly limiting the effectiveness of intelligent fault diagnosis methods. To address this issue, a novel fault diagnosis method for rotating machinery is proposed in this paper, which combines the batch channel normalized conditional wasserstein generative adversarial network (BCN-CWGAN) with Swin Transformer. Firstly, the one-dimensional vibration signal is preprocessed into two-dimensional feature images using a symmetrized dot pattern. Subsequently, self-attention mechanism and deep feature learning module constructed by DenseNet are integrated into the generator of GAN to acquire more discriminative feature information. Meanwhile, the discriminator of GAN is combined with batch channel normalization strategy, which further enhances the generalization ability. Besides, a two time-scale update rule strategy enhances training stability and convergence speed by updating model parameters at different time scales. Then, the data augmentation capability of BCN-CWGAN is used to generate high-quality fault samples to augment the imbalanced dataset. Finally, Swin Transformer is combined to achieve accurate fault diagnosis. The performance enhancement of the proposed method is verified through comparison and diagnosis results of two engineering experiments, demonstrating its substantial value for research in engineering practice. With the proposed data augmentation method, the average accuracy of A 1 , B 1 , C 1 , and D 1 datasets in experiment 1 reached 99.24%, 98.85%, 96.78%, and 96.04%, respectively. Meanwhile, the proposed method achieved the best accuracy in experiment 2.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
玫瑰羊完成签到,获得积分10
2秒前
Hello应助探寻采纳,获得10
2秒前
上官若男应助盛清让采纳,获得10
3秒前
xiaosun完成签到,获得积分10
4秒前
4秒前
FashionBoy应助lplp采纳,获得10
5秒前
平淡妙彤发布了新的文献求助10
5秒前
6秒前
小鱼鱼Fish发布了新的文献求助10
6秒前
868发布了新的文献求助10
7秒前
王赞应助yamo采纳,获得50
8秒前
哒哒完成签到,获得积分10
8秒前
Sunmmon发布了新的文献求助10
9秒前
善学以致用应助benbenx采纳,获得10
9秒前
9秒前
CodeCraft应助tian采纳,获得10
10秒前
英俊的铭应助包博采纳,获得10
11秒前
量子星尘发布了新的文献求助10
12秒前
12秒前
Physio完成签到,获得积分10
14秒前
无恙发布了新的文献求助10
14秒前
xiaosun发布了新的文献求助10
16秒前
Robert完成签到,获得积分20
17秒前
慕青应助benbenx采纳,获得10
17秒前
wlnhyF完成签到,获得积分10
20秒前
20秒前
21秒前
tian完成签到,获得积分20
21秒前
21秒前
g7001完成签到,获得积分10
22秒前
臭小子发布了新的文献求助10
23秒前
Molly0303完成签到,获得积分10
24秒前
24秒前
tian发布了新的文献求助10
26秒前
兰月满楼发布了新的文献求助10
27秒前
27秒前
牵蚂蚁逛公园完成签到 ,获得积分20
28秒前
28秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Effective Learning and Mental Wellbeing 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3975375
求助须知:如何正确求助?哪些是违规求助? 3519718
关于积分的说明 11199471
捐赠科研通 3256067
什么是DOI,文献DOI怎么找? 1798075
邀请新用户注册赠送积分活动 877386
科研通“疑难数据库(出版商)”最低求助积分说明 806305