Batch channel normalized-CWGAN with Swin Transformer for imbalanced data fault diagnosis of rotating machinery

变压器 计算机科学 断层(地质) 频道(广播) 电气工程 电信 工程类 地质学 电压 地震学
作者
Wenlong Fu,Bo Zheng,Shuai Li,Weiqing Liao,Yuguang Huang,Xiaoyue Chen
出处
期刊:Measurement Science and Technology [IOP Publishing]
标识
DOI:10.1088/1361-6501/ad8673
摘要

Abstract In real scenarios, rotating machinery is mainly operated in optimal condition, leading to fault data scarce and difficult to collect. This issue results in imbalanced data, significantly limiting the effectiveness of intelligent fault diagnosis methods. To address this issue, a novel fault diagnosis method for rotating machinery is proposed in this paper, which combines the batch channel normalized conditional wasserstein generative adversarial network (BCN-CWGAN) with Swin Transformer. Firstly, the one-dimensional vibration signal is preprocessed into two-dimensional feature images using a symmetrized dot pattern (SDP). Subsequently, self-attention mechanism and deep feature learning module constructed by DenseNet are integrated into the generator of GAN to acquire more discriminative feature information. Meanwhile, the discriminator of GAN is combined with batch channel normalization strategy, which further enhances the generalization ability. Besides, a two time-scale update rule strategy enhances training stability and convergence speed by updating model parameters at different time scales. Then, the data augmentation capability of BCN-CWGAN is used to generate high-quality fault samples to augment the imbalanced dataset. Finally, Swin Transformer is combined to achieve accurate fault diagnosis. The performance enhancement of the proposed method is verified through comparison and diagnosis results of two engineering experiments, demonstrating its substantial value for research in engineering practice. With the proposed data augmentation method, the average accuracy of A1, B1, C1, and D1 datasets in experiment 1 reached 99.24%, 98.85%, 96.78%, and 96.04%, respectively. Meanwhile, the proposed method achieved the best accuracy in experiment 2.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
拾云完成签到,获得积分10
3秒前
研友完成签到 ,获得积分10
5秒前
lishui完成签到 ,获得积分10
6秒前
10秒前
13秒前
斯文败类应助lfl采纳,获得10
15秒前
15秒前
相率而为伪者完成签到,获得积分10
16秒前
17秒前
18秒前
努力成为科研大佬完成签到,获得积分10
18秒前
柔弱雅香给柔弱雅香的求助进行了留言
18秒前
小卷粉完成签到 ,获得积分10
18秒前
CipherSage应助xm采纳,获得10
18秒前
kkdkg发布了新的文献求助10
18秒前
20秒前
Crazy111完成签到,获得积分10
20秒前
22秒前
gao完成签到 ,获得积分10
22秒前
23秒前
诺796完成签到,获得积分10
24秒前
丰盛的煎饼应助kkdkg采纳,获得10
25秒前
风中的万言关注了科研通微信公众号
25秒前
27秒前
善学以致用应助啤酒白菜采纳,获得30
27秒前
干净的时光应助杰瑞采纳,获得10
28秒前
王柯完成签到,获得积分10
29秒前
虚心的不二完成签到 ,获得积分10
30秒前
恩赐解脱完成签到,获得积分10
31秒前
sandra完成签到 ,获得积分10
32秒前
cjesty完成签到,获得积分10
34秒前
35秒前
肉夹馍完成签到,获得积分10
36秒前
li驳回了大模型应助
38秒前
38秒前
九月完成签到,获得积分10
39秒前
39秒前
kk发布了新的文献求助10
43秒前
安好发布了新的文献求助10
44秒前
47秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3151919
求助须知:如何正确求助?哪些是违规求助? 2803228
关于积分的说明 7852576
捐赠科研通 2460608
什么是DOI,文献DOI怎么找? 1309955
科研通“疑难数据库(出版商)”最低求助积分说明 629070
版权声明 601760