阴极
材料科学
无定形固体
电解质
相间
化学工程
锌
水溶液
离子
超短脉冲
纳米技术
图层(电子)
冶金
电极
化学
结晶学
物理化学
光学
有机化学
工程类
物理
生物
遗传学
激光器
作者
Chen Hu,Binjie Li,Kunkun Nie,Ziyi Wang,Yujia Zhang,Lixin Yi,Xiaorong Hao,Huang Zhang,Shaokun Chong,Z.Y. Liu,Wei Huang
出处
期刊:Angewandte Chemie
[Wiley]
日期:2024-09-30
卷期号:64 (1): e202413173-e202413173
被引量:22
标识
DOI:10.1002/anie.202413173
摘要
Abstract Vanadium (V)‐based oxides as cathode materials for aqueous zinc‐ion batteries (AZIBs) still encounter challenges such as sluggish Zn 2+ diffusion kinetics and V‐dissolution, thus leading to severe capacity fading and limited life span. Here, we designed an ultrafast and facile colloidal chemical synthesis strategy based on crystalline Zn 0.25 V 2 O 5 ( c‐ ZVO) to successfully prepare a‐ ZVO@MoS 2 core@shell heterostructures, where atomic‐layer MoS 2 uniformly coats on the surface of amorphous a‐ ZVO. The tailored amorphous structure of a‐ ZVO provides more isotropic pathways and active sites for Zn 2+ , thus significantly enhancing the Zn 2+ diffusion kinetics during charge–discharge processes. Meanwhile, as an efficient artificial cathode electrolyte interphase, the precision‐engineered atomic‐layer MoS 2 with semi‐metallic 1T′ phase not only contributes to improved electron transport but also effectively inhibits the V‐dissolution of a‐ ZVO. Therefore, the prepared a‐ ZVO@MoS 2 and conceptually validated a‐ V 2 O 5 @MoS 2 derived from commercial c‐ V 2 O 5 exhibit excellent cycling stability at an ultralow current density (0.05 A g −1 ) while maintaining good rate capability and capacity retention. This research achievement provides a new effective strategy for various amorphous cathode designs for AZIBs with superior performance.
科研通智能强力驱动
Strongly Powered by AbleSci AI