捕食者
捕食
霍普夫分叉
出租车
功能性反应
分叉
数学
鞍结分岔
分叉理论的生物学应用
控制理论(社会学)
应用数学
统计物理学
物理
生态学
生物
非线性系统
计算机科学
植物
控制(管理)
量子力学
人工智能
标识
DOI:10.1142/s021987622450035x
摘要
In this paper, our focus is on the study of Hopf bifurcation in a diffusive predator–prey system that incorporates indirect predator-taxis. We commence by examining the stability of the unique positive constant steady state and the occurrence of Hopf bifurcation within this system. Following this, we utilize the center manifold theorem and the normal form theory to devise an algorithm for calculating the normal form of the Hopf bifurcation in this system. This algorithm enables us to determine the direction and stability of the resulting periodic solution from the Hopf bifurcation. Through numerical simulations, we demonstrate the effectiveness of our algorithm, thereby confirming the validity of our theoretical analysis. Additionally, we observe the emergence of stable spatially inhomogeneous periodic solutions resulting from the Hopf bifurcation.
科研通智能强力驱动
Strongly Powered by AbleSci AI