Real-time estimation of bridge displacements under vehicle loads using physical mechanism-based attention-LSTM network with partial strain measurements

结构工程 机制(生物学) 桥(图论) 拉伤 计算机科学 材料科学 控制理论(社会学) 工程类 物理 人工智能 控制(管理) 量子力学 医学 内科学
作者
Ying Lei,Fubo Zhang,Junjie Wang
出处
期刊:Advances in Structural Engineering [SAGE]
标识
DOI:10.1177/13694332241286537
摘要

Dynamic displacement of bridges under moving vehicle loads is a critical safety indicator for bridges, yet directly measuring these displacements poses practical challenges. Although computer vision-based techniques for measuring displacements have gained application, they are influenced by environmental conditions. Alternatively, indirect estimation of bridge displacements has attracted great attention. Currently, some deep learning methods have been developed to estimate displacements at positions deployed with accelerometers or strain sensors. In this paper, a method for real-time estimation of moving vehicle load-induced bridge displacements in interested regions is proposed utilizing an attention-Long Short-Term Memory (LSTM) network with partial strain measurements. It is based on the physical mechanisms of strain-displacement relationship of beam-type structures and bridge modal responses can be estimated from partial strain measurements to reconstruct structural displacements through the superposition of modal responses. For network training, the physical mapping between partial strains and the displacements in interested regions is learned by an attention-based LSTM network. Then, bridge displacements in interested regions can be estimated by the trained network using only partial strain measurements. Numerical examples of estimating the displacements of a simply supported beam bridge and the Hainan Haiwen bridge under random moving loads validate that the proposed method can estimate bridge displacements in any interested regions in real-time using only partial strain measurements.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
uuuu完成签到 ,获得积分10
1秒前
王哪跑完成签到 ,获得积分10
1秒前
可爱的函函应助黄10086采纳,获得10
1秒前
zz发布了新的文献求助20
1秒前
刘燕发布了新的文献求助30
1秒前
2秒前
zZ发布了新的文献求助10
2秒前
田様应助可耐的香芦采纳,获得10
2秒前
4秒前
5秒前
5秒前
5秒前
鲜夕阳完成签到,获得积分20
7秒前
7秒前
筱筱完成签到 ,获得积分10
7秒前
热心映易完成签到,获得积分20
8秒前
9秒前
10秒前
超级阅读器完成签到,获得积分10
11秒前
隐形曼青应助kk采纳,获得10
11秒前
orixero应助慕迎蕾采纳,获得10
11秒前
12秒前
㊣㊣发布了新的文献求助10
12秒前
12秒前
HFan完成签到,获得积分10
12秒前
13秒前
CipherSage应助阿辉采纳,获得10
13秒前
13秒前
脑洞疼应助tt采纳,获得10
15秒前
云136发布了新的文献求助10
15秒前
热心映易关注了科研通微信公众号
16秒前
房咕咕完成签到,获得积分10
16秒前
仁爱的怜南完成签到 ,获得积分10
17秒前
17秒前
17秒前
九九完成签到,获得积分10
18秒前
花椒发布了新的文献求助10
18秒前
小羽发布了新的文献求助30
18秒前
19秒前
20秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 890
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Saponins and sapogenins. IX. Saponins and sapogenins of Luffa aegyptica mill seeds (black variety) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3259400
求助须知:如何正确求助?哪些是违规求助? 2901041
关于积分的说明 8313648
捐赠科研通 2570419
什么是DOI,文献DOI怎么找? 1396491
科研通“疑难数据库(出版商)”最低求助积分说明 653523
邀请新用户注册赠送积分活动 631527