Real-time estimation of bridge displacements under vehicle loads using physical mechanism-based attention-LSTM network with partial strain measurements

结构工程 机制(生物学) 桥(图论) 拉伤 计算机科学 材料科学 控制理论(社会学) 工程类 物理 人工智能 控制(管理) 医学 量子力学 内科学
作者
Ying Lei,Fubo Zhang,Junjie Wang
出处
期刊:Advances in Structural Engineering [SAGE]
被引量:1
标识
DOI:10.1177/13694332241286537
摘要

Dynamic displacement of bridges under moving vehicle loads is a critical safety indicator for bridges, yet directly measuring these displacements poses practical challenges. Although computer vision-based techniques for measuring displacements have gained application, they are influenced by environmental conditions. Alternatively, indirect estimation of bridge displacements has attracted great attention. Currently, some deep learning methods have been developed to estimate displacements at positions deployed with accelerometers or strain sensors. In this paper, a method for real-time estimation of moving vehicle load-induced bridge displacements in interested regions is proposed utilizing an attention-Long Short-Term Memory (LSTM) network with partial strain measurements. It is based on the physical mechanisms of strain-displacement relationship of beam-type structures and bridge modal responses can be estimated from partial strain measurements to reconstruct structural displacements through the superposition of modal responses. For network training, the physical mapping between partial strains and the displacements in interested regions is learned by an attention-based LSTM network. Then, bridge displacements in interested regions can be estimated by the trained network using only partial strain measurements. Numerical examples of estimating the displacements of a simply supported beam bridge and the Hainan Haiwen bridge under random moving loads validate that the proposed method can estimate bridge displacements in any interested regions in real-time using only partial strain measurements.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
孙颖莎粉丝完成签到,获得积分10
刚刚
刚刚
小伏发布了新的文献求助30
刚刚
诶诶完成签到,获得积分10
1秒前
1秒前
yueyue3SCI完成签到,获得积分10
1秒前
2秒前
xulili完成签到,获得积分20
3秒前
呜哩哇啦完成签到,获得积分20
3秒前
彭于晏应助heady采纳,获得10
3秒前
FashionBoy应助粗心的无剑采纳,获得10
4秒前
奋斗晓旋完成签到 ,获得积分10
4秒前
4秒前
lihuanmoon发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
怪诞完成签到,获得积分10
5秒前
高兴完成签到,获得积分10
7秒前
lss完成签到,获得积分10
8秒前
魏小梅发布了新的文献求助10
8秒前
8秒前
ding应助科研通管家采纳,获得10
8秒前
张瑜发布了新的文献求助10
9秒前
酷波er应助科研通管家采纳,获得10
9秒前
浮游应助科研通管家采纳,获得10
9秒前
浮游应助科研通管家采纳,获得10
9秒前
嘿嘿应助科研通管家采纳,获得10
9秒前
搜集达人应助科研通管家采纳,获得10
9秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
香蕉觅云应助科研通管家采纳,获得10
9秒前
浮游应助科研通管家采纳,获得10
9秒前
顾矜应助科研通管家采纳,获得10
9秒前
9秒前
浮游应助科研通管家采纳,获得10
9秒前
BowieHuang应助科研通管家采纳,获得10
9秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
9秒前
zoe_bee发布了新的文献求助10
10秒前
Lucas应助爱学习的晴晴采纳,获得10
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5653351
求助须知:如何正确求助?哪些是违规求助? 4789770
关于积分的说明 15063822
捐赠科研通 4811874
什么是DOI,文献DOI怎么找? 2574163
邀请新用户注册赠送积分活动 1529858
关于科研通互助平台的介绍 1488577