Real-time estimation of bridge displacements under vehicle loads using physical mechanism-based attention-LSTM network with partial strain measurements

结构工程 机制(生物学) 桥(图论) 拉伤 计算机科学 材料科学 控制理论(社会学) 工程类 物理 人工智能 控制(管理) 医学 量子力学 内科学
作者
Ying Lei,Fubo Zhang,Junjie Wang
出处
期刊:Advances in Structural Engineering [SAGE Publishing]
被引量:1
标识
DOI:10.1177/13694332241286537
摘要

Dynamic displacement of bridges under moving vehicle loads is a critical safety indicator for bridges, yet directly measuring these displacements poses practical challenges. Although computer vision-based techniques for measuring displacements have gained application, they are influenced by environmental conditions. Alternatively, indirect estimation of bridge displacements has attracted great attention. Currently, some deep learning methods have been developed to estimate displacements at positions deployed with accelerometers or strain sensors. In this paper, a method for real-time estimation of moving vehicle load-induced bridge displacements in interested regions is proposed utilizing an attention-Long Short-Term Memory (LSTM) network with partial strain measurements. It is based on the physical mechanisms of strain-displacement relationship of beam-type structures and bridge modal responses can be estimated from partial strain measurements to reconstruct structural displacements through the superposition of modal responses. For network training, the physical mapping between partial strains and the displacements in interested regions is learned by an attention-based LSTM network. Then, bridge displacements in interested regions can be estimated by the trained network using only partial strain measurements. Numerical examples of estimating the displacements of a simply supported beam bridge and the Hainan Haiwen bridge under random moving loads validate that the proposed method can estimate bridge displacements in any interested regions in real-time using only partial strain measurements.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大模型应助无限映波采纳,获得10
刚刚
刚刚
1秒前
2秒前
桐桐应助grace采纳,获得10
3秒前
3秒前
诺贝尔候选人完成签到 ,获得积分10
4秒前
556应助仲达采纳,获得10
4秒前
boshi发布了新的文献求助10
4秒前
小菜发布了新的文献求助10
5秒前
北风完成签到,获得积分10
8秒前
Serena510完成签到 ,获得积分10
8秒前
慕青应助欣慰的乌冬面采纳,获得10
9秒前
ding应助方仔采纳,获得10
10秒前
hhhh应助bliss采纳,获得20
10秒前
11秒前
大个应助苗条的辣辣采纳,获得10
11秒前
猪猪完成签到,获得积分10
12秒前
12秒前
研友_ngkEgn完成签到,获得积分10
12秒前
赘婿应助小菜采纳,获得10
12秒前
完美世界应助shinn采纳,获得30
14秒前
15秒前
LYSM应助一言矣采纳,获得10
15秒前
CC完成签到 ,获得积分10
15秒前
可靠的嫣然完成签到,获得积分10
15秒前
zys发布了新的文献求助30
15秒前
grace发布了新的文献求助10
16秒前
kkk发布了新的文献求助10
17秒前
英姑应助老迟到的沛萍采纳,获得10
17秒前
aaaaaa完成签到,获得积分10
17秒前
Janson完成签到,获得积分10
18秒前
ding应助英勇的人生采纳,获得10
19秒前
Orange应助哈哈采纳,获得10
20秒前
Nathan完成签到,获得积分10
20秒前
小菜完成签到,获得积分20
20秒前
Carrot发布了新的文献求助10
21秒前
21秒前
温冰雪完成签到,获得积分10
23秒前
nanfeng完成签到,获得积分10
25秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Effective Learning and Mental Wellbeing 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3975339
求助须知:如何正确求助?哪些是违规求助? 3519670
关于积分的说明 11199199
捐赠科研通 3256002
什么是DOI,文献DOI怎么找? 1798043
邀请新用户注册赠送积分活动 877386
科研通“疑难数据库(出版商)”最低求助积分说明 806305