Real-time estimation of bridge displacements under vehicle loads using physical mechanism-based attention-LSTM network with partial strain measurements

结构工程 机制(生物学) 桥(图论) 拉伤 计算机科学 材料科学 控制理论(社会学) 工程类 物理 人工智能 控制(管理) 医学 量子力学 内科学
作者
Ying Lei,Fubo Zhang,Junjie Wang
出处
期刊:Advances in Structural Engineering [SAGE Publishing]
被引量:1
标识
DOI:10.1177/13694332241286537
摘要

Dynamic displacement of bridges under moving vehicle loads is a critical safety indicator for bridges, yet directly measuring these displacements poses practical challenges. Although computer vision-based techniques for measuring displacements have gained application, they are influenced by environmental conditions. Alternatively, indirect estimation of bridge displacements has attracted great attention. Currently, some deep learning methods have been developed to estimate displacements at positions deployed with accelerometers or strain sensors. In this paper, a method for real-time estimation of moving vehicle load-induced bridge displacements in interested regions is proposed utilizing an attention-Long Short-Term Memory (LSTM) network with partial strain measurements. It is based on the physical mechanisms of strain-displacement relationship of beam-type structures and bridge modal responses can be estimated from partial strain measurements to reconstruct structural displacements through the superposition of modal responses. For network training, the physical mapping between partial strains and the displacements in interested regions is learned by an attention-based LSTM network. Then, bridge displacements in interested regions can be estimated by the trained network using only partial strain measurements. Numerical examples of estimating the displacements of a simply supported beam bridge and the Hainan Haiwen bridge under random moving loads validate that the proposed method can estimate bridge displacements in any interested regions in real-time using only partial strain measurements.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
孤岛完成签到,获得积分10
刚刚
西西歪发布了新的文献求助10
刚刚
小阿飞完成签到,获得积分10
刚刚
顾己完成签到,获得积分10
1秒前
开心铃铛完成签到,获得积分10
1秒前
li发布了新的文献求助10
2秒前
2秒前
Vivian完成签到,获得积分10
2秒前
2秒前
沉静寒云完成签到 ,获得积分10
2秒前
3秒前
xukaixuan001完成签到,获得积分10
3秒前
Pan完成签到,获得积分10
4秒前
栗子完成签到 ,获得积分10
5秒前
一天不学浑身难受完成签到 ,获得积分10
5秒前
22完成签到,获得积分10
6秒前
坐等时光看轻自己完成签到,获得积分10
6秒前
小马甲应助lou采纳,获得10
6秒前
6秒前
典雅大白菜真实的钥匙完成签到,获得积分10
6秒前
攒星星完成签到,获得积分10
6秒前
笑羽完成签到,获得积分0
7秒前
紫麒麟完成签到,获得积分10
7秒前
Sodagreen2023完成签到,获得积分10
7秒前
吃光月亮发布了新的文献求助10
8秒前
benbengouj完成签到,获得积分10
8秒前
XS_QI完成签到 ,获得积分10
8秒前
稳重的安萱完成签到,获得积分10
8秒前
张雯雯完成签到,获得积分10
8秒前
8秒前
微兔小妹完成签到 ,获得积分10
9秒前
xxx完成签到,获得积分10
9秒前
LUNWENREQUEST完成签到,获得积分10
9秒前
10秒前
shuguang发布了新的文献求助10
10秒前
郭郭郭完成签到,获得积分10
10秒前
杨春末发布了新的文献求助10
10秒前
叶子完成签到,获得积分10
10秒前
zsk1122完成签到,获得积分10
11秒前
小番茄完成签到,获得积分10
11秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 500
An International System for Human Cytogenomic Nomenclature (2024) 500
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3767251
求助须知:如何正确求助?哪些是违规求助? 3311860
关于积分的说明 10160297
捐赠科研通 3027023
什么是DOI,文献DOI怎么找? 1661400
邀请新用户注册赠送积分活动 794031
科研通“疑难数据库(出版商)”最低求助积分说明 755955