亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Towards 360 VR Sickness Mitigation: From Virtual Reality Eye-tracking to Visual Communication

虚拟现实 计算机科学 模拟病 眼动 可视化 人机交互 数据可视化 多媒体 计算机视觉 视觉传达 计算机图形学(图像) 人工智能
作者
Jeonghaeng Lee,Woojae Kim,Chao Yang,Ping An,Sanghoon Lee
出处
期刊:IEEE Transactions on Visualization and Computer Graphics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-13
标识
DOI:10.1109/tvcg.2024.3447838
摘要

Most 360 virtual reality (VR) contents have been developed without considering that users could be affected by VR sickness. Accordingly, users' viewing safety has been steadily highlighted as a critical problem in the VR market. In this study, we investigate a novel VR sickness mitigation framework based on human visual characteristics for the rendered VR content. First, we build a large-scale 360 VR content database termed VRSP360 (VR Sickness and Presence 360) dedicated to the analysis of VR sickness and thoroughly conduct eye-tracking experiments to measure human perception. In the experiment, we observe that the users' gaze distribution is highly center-biased when they experience excessive VR sickness. From this observation, we design a foveated filtering framework that limits high-frequency textures in the peripheral view to mitigate VR sickness. Particularly, given the human visual system's (HVS) non-uniform resolution with respect to the fovea, we also adopt the foveation-based filtering method using the trade-off between sickness mitigation and presence conservation, which reduces any loss in perceptual quality despite the filtering. We further demonstrate that our framework can effectively compress visual information by applying foveated compression. In addition, we develop two metrics (visual texture index and perceptual information index) to measure the effective preservation of user-perceived information despite the filtration of peripheral vision textures by our proposed mitigation method. Through rigorous subjective evaluation on both original content and its VR-sickness-mitigated version, we demonstrate that the proposed framework successfully mitigates VR sickness with a reduction rate of ∼ 19% on the proposed dataset.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
RE完成签到 ,获得积分10
6秒前
量子星尘发布了新的文献求助30
10秒前
paannqi完成签到,获得积分10
10秒前
zone54188完成签到,获得积分10
30秒前
42秒前
Wa1Zh0u发布了新的文献求助30
46秒前
嘻嘻完成签到,获得积分10
58秒前
liman发布了新的文献求助30
1分钟前
summer完成签到,获得积分10
1分钟前
噜噜完成签到,获得积分10
1分钟前
隐形曼青应助噜噜采纳,获得30
1分钟前
1分钟前
小珂完成签到 ,获得积分10
2分钟前
2分钟前
3分钟前
愿景发布了新的文献求助10
3分钟前
平常寄容发布了新的文献求助10
3分钟前
我是老大应助徐志豪采纳,获得10
3分钟前
平常寄容完成签到,获得积分20
4分钟前
Wa1Zh0u完成签到,获得积分20
4分钟前
bkagyin应助愿景采纳,获得10
4分钟前
4分钟前
归尘应助liman采纳,获得10
4分钟前
Twonej应助Wa1Zh0u采纳,获得30
4分钟前
4分钟前
Jasper应助科研通管家采纳,获得30
4分钟前
Akim应助科研通管家采纳,获得10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
4分钟前
yg发布了新的文献求助10
5分钟前
5分钟前
5分钟前
BowieHuang应助Wa1Zh0u采纳,获得10
5分钟前
5分钟前
5分钟前
栗子完成签到 ,获得积分10
5分钟前
小宋发布了新的文献求助10
5分钟前
隐形曼青应助小宋采纳,获得10
5分钟前
liman完成签到 ,获得积分10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5723993
求助须知:如何正确求助?哪些是违规求助? 5283171
关于积分的说明 15299496
捐赠科研通 4872203
什么是DOI,文献DOI怎么找? 2616637
邀请新用户注册赠送积分活动 1566530
关于科研通互助平台的介绍 1523401