Towards 360 VR Sickness Mitigation: From Virtual Reality Eye-tracking to Visual Communication

虚拟现实 计算机科学 模拟病 眼动 可视化 人机交互 数据可视化 多媒体 计算机视觉 视觉传达 计算机图形学(图像) 人工智能
作者
Jeonghaeng Lee,Woojae Kim,Chao Yang,Ping An,Sanghoon Lee
出处
期刊:IEEE Transactions on Visualization and Computer Graphics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-13
标识
DOI:10.1109/tvcg.2024.3447838
摘要

Most 360 virtual reality (VR) contents have been developed without considering that users could be affected by VR sickness. Accordingly, users' viewing safety has been steadily highlighted as a critical problem in the VR market. In this study, we investigate a novel VR sickness mitigation framework based on human visual characteristics for the rendered VR content. First, we build a large-scale 360 VR content database termed VRSP360 (VR Sickness and Presence 360) dedicated to the analysis of VR sickness and thoroughly conduct eye-tracking experiments to measure human perception. In the experiment, we observe that the users' gaze distribution is highly center-biased when they experience excessive VR sickness. From this observation, we design a foveated filtering framework that limits high-frequency textures in the peripheral view to mitigate VR sickness. Particularly, given the human visual system's (HVS) non-uniform resolution with respect to the fovea, we also adopt the foveation-based filtering method using the trade-off between sickness mitigation and presence conservation, which reduces any loss in perceptual quality despite the filtering. We further demonstrate that our framework can effectively compress visual information by applying foveated compression. In addition, we develop two metrics (visual texture index and perceptual information index) to measure the effective preservation of user-perceived information despite the filtration of peripheral vision textures by our proposed mitigation method. Through rigorous subjective evaluation on both original content and its VR-sickness-mitigated version, we demonstrate that the proposed framework successfully mitigates VR sickness with a reduction rate of ∼ 19% on the proposed dataset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
怕黑向秋完成签到,获得积分10
刚刚
刚刚
852应助waq采纳,获得10
1秒前
海鸥海鸥完成签到,获得积分10
1秒前
1秒前
笑点低蜜蜂完成签到,获得积分10
1秒前
nana完成签到,获得积分10
1秒前
xiaoxiao完成签到,获得积分10
1秒前
顺心迎南发布了新的文献求助10
1秒前
2秒前
2秒前
xhy发布了新的文献求助10
2秒前
library2025完成签到,获得积分10
2秒前
FashionBoy应助宋十一采纳,获得10
2秒前
2秒前
有魅力哈密瓜完成签到,获得积分10
3秒前
gougoudy完成签到,获得积分20
3秒前
吃面包的熊猫完成签到,获得积分10
3秒前
孙一雯完成签到,获得积分10
5秒前
李健应助hhh采纳,获得10
5秒前
七七发布了新的文献求助20
5秒前
hu970发布了新的文献求助10
5秒前
牧海冬发布了新的文献求助10
5秒前
可颂发布了新的文献求助10
5秒前
情怀应助后知后觉采纳,获得10
5秒前
嗡嗡完成签到,获得积分10
5秒前
优雅的琳完成签到,获得积分20
5秒前
迷路安阳完成签到,获得积分10
5秒前
Anonymous完成签到,获得积分10
6秒前
6秒前
小蘑菇应助自然采纳,获得10
7秒前
伞兵龙完成签到,获得积分10
7秒前
7秒前
西安小小朱完成签到,获得积分10
7秒前
7秒前
8秒前
小二郎应助打工人章鱼哥采纳,获得10
8秒前
优雅的琳发布了新的文献求助10
8秒前
Niar完成签到 ,获得积分10
8秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672