Towards 360 VR Sickness Mitigation: From Virtual Reality Eye-tracking to Visual Communication

虚拟现实 计算机科学 模拟病 眼动 可视化 人机交互 数据可视化 多媒体 计算机视觉 视觉传达 计算机图形学(图像) 人工智能
作者
Jeonghaeng Lee,Woojae Kim,Chao Yang,Ping An,Sanghoon Lee
出处
期刊:IEEE Transactions on Visualization and Computer Graphics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-13
标识
DOI:10.1109/tvcg.2024.3447838
摘要

Most 360 virtual reality (VR) contents have been developed without considering that users could be affected by VR sickness. Accordingly, users' viewing safety has been steadily highlighted as a critical problem in the VR market. In this study, we investigate a novel VR sickness mitigation framework based on human visual characteristics for the rendered VR content. First, we build a large-scale 360 VR content database termed VRSP360 (VR Sickness and Presence 360) dedicated to the analysis of VR sickness and thoroughly conduct eye-tracking experiments to measure human perception. In the experiment, we observe that the users' gaze distribution is highly center-biased when they experience excessive VR sickness. From this observation, we design a foveated filtering framework that limits high-frequency textures in the peripheral view to mitigate VR sickness. Particularly, given the human visual system's (HVS) non-uniform resolution with respect to the fovea, we also adopt the foveation-based filtering method using the trade-off between sickness mitigation and presence conservation, which reduces any loss in perceptual quality despite the filtering. We further demonstrate that our framework can effectively compress visual information by applying foveated compression. In addition, we develop two metrics (visual texture index and perceptual information index) to measure the effective preservation of user-perceived information despite the filtration of peripheral vision textures by our proposed mitigation method. Through rigorous subjective evaluation on both original content and its VR-sickness-mitigated version, we demonstrate that the proposed framework successfully mitigates VR sickness with a reduction rate of ∼ 19% on the proposed dataset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大力犀牛发布了新的文献求助10
刚刚
SciGPT应助闪闪航空采纳,获得10
刚刚
1秒前
苏打水应助DJDJDDDJ采纳,获得10
1秒前
科研通AI6应助咩咩羊采纳,获得10
1秒前
糕糕完成签到,获得积分10
2秒前
隐形曼青应助Coke采纳,获得10
2秒前
Hello应助Coke采纳,获得10
2秒前
CodeCraft应助Coke采纳,获得10
2秒前
小蘑菇应助Coke采纳,获得10
2秒前
2秒前
万能图书馆应助Coke采纳,获得10
2秒前
Hello应助Coke采纳,获得10
2秒前
李健应助Coke采纳,获得10
2秒前
所所应助Coke采纳,获得10
2秒前
香蕉觅云应助plant采纳,获得10
2秒前
今后应助小包采纳,获得10
2秒前
罗静发布了新的文献求助10
3秒前
凯凯发布了新的文献求助10
3秒前
YW发布了新的文献求助10
4秒前
还有跟完成签到,获得积分10
4秒前
lx发布了新的文献求助10
5秒前
科研通AI6应助尤苏福采纳,获得50
5秒前
橘子发布了新的文献求助10
6秒前
dlindl完成签到,获得积分10
6秒前
6秒前
大力犀牛完成签到,获得积分10
7秒前
8秒前
kaiserkkk完成签到,获得积分10
8秒前
Lisztan发布了新的文献求助10
8秒前
小高完成签到,获得积分10
8秒前
孤独的颜演完成签到,获得积分10
8秒前
科研通AI6应助arui采纳,获得10
9秒前
王冰洁完成签到,获得积分10
9秒前
请风再拂面完成签到,获得积分10
9秒前
纪震宇发布了新的文献求助10
10秒前
10秒前
温小满完成签到 ,获得积分10
10秒前
11秒前
皮卡pika发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5481425
求助须知:如何正确求助?哪些是违规求助? 4582472
关于积分的说明 14385266
捐赠科研通 4511130
什么是DOI,文献DOI怎么找? 2472225
邀请新用户注册赠送积分活动 1458545
关于科研通互助平台的介绍 1432065