亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

AI-Driven Innovations in Alzheimer's Disease: Integrating Early Diagnosis, Personalized Treatment, and Prognostic Modelling

疾病 阿尔茨海默病 医学 神经科学 重症监护医学 内科学 心理学
作者
Mayur B. Kale,Nitu L. Wankhede,Rupali S. Pawar,Suhas Ballal,Rohit Kumawat,Manish Goswami,Mohammad Khalid,Brijesh G. Taksande,Aman B. Upaganlawar,Milind J. Umekar,Spandana Rajendra Kopalli,Sushruta Koppula
出处
期刊:Ageing Research Reviews [Elsevier BV]
卷期号:: 102497-102497 被引量:6
标识
DOI:10.1016/j.arr.2024.102497
摘要

Alzheimer's disease (AD) presents a significant challenge in neurodegenerative research and clinical practice due to its complex etiology and progressive nature. The integration of artificial intelligence (AI) into the diagnosis, treatment, and prognostic modelling of AD holds promising potential to transform the landscape of dementia care. This review explores recent advancements in AI applications across various stages of AD management. In early diagnosis, AI-enhanced neuroimaging techniques, including MRI, PET, and CT scans, enable precise detection of AD biomarkers. Machine learning models analyze these images to identify patterns indicative of early cognitive decline. Additionally, AI algorithms are employed to detect genetic and proteomic biomarkers, facilitating early intervention. Cognitive and behavioral assessments have also benefited from AI, with tools that enhance the accuracy of neuropsychological tests and analyze speech and language patterns for early signs of dementia. Personalized treatment strategies have been revolutionized by AI-driven approaches. In drug discovery, virtual screening and drug repurposing, guided by predictive modelling, accelerate the identification of effective treatments. AI also aids in tailoring therapeutic interventions by predicting individual responses to treatments and monitoring patient progress, allowing for dynamic adjustment of care plans. Prognostic modelling, another critical area, utilizes AI to predict disease progression through longitudinal data analysis and risk prediction models. The integration of multi-modal data, combining clinical, genetic, and imaging information, enhances the accuracy of these predictions. Deep learning techniques are particularly effective in fusing diverse data types to uncover new insights into disease mechanisms and progression. Despite these advancements, challenges remain, including ethical considerations, data privacy, and the need for seamless integration of AI tools into clinical workflows. This review underscores the transformative potential of AI in AD management while highlighting areas for future research and development. By leveraging AI, the healthcare community can improve early diagnosis, personalize treatments, and predict disease outcomes more accurately, ultimately enhancing the quality of life for individuals with AD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
6秒前
11秒前
12秒前
smile发布了新的文献求助50
17秒前
量子星尘发布了新的文献求助10
17秒前
18秒前
实验室憨批的师弟完成签到,获得积分10
21秒前
30秒前
yaoli0823发布了新的文献求助10
33秒前
量子星尘发布了新的文献求助30
35秒前
40秒前
wykion完成签到,获得积分0
40秒前
42秒前
量子星尘发布了新的文献求助10
45秒前
46秒前
Hello应助忧伤的半梅采纳,获得10
46秒前
三泥完成签到,获得积分10
51秒前
56秒前
量子星尘发布了新的文献求助10
58秒前
1分钟前
Rinsana完成签到,获得积分10
1分钟前
酷波er应助zxcv22100采纳,获得10
1分钟前
1分钟前
1分钟前
友好牛排发布了新的文献求助10
1分钟前
1分钟前
深情安青应助阿飞采纳,获得10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
zxcv22100发布了新的文献求助10
1分钟前
1分钟前
科研通AI2S应助年轻的如冰采纳,获得10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
乐乐应助雀斑采纳,获得10
1分钟前
yaoli0823完成签到,获得积分20
1分钟前
LINxu发布了新的文献求助10
1分钟前
SciGPT应助陶醉的手套采纳,获得10
1分钟前
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3660936
求助须知:如何正确求助?哪些是违规求助? 3222150
关于积分的说明 9743712
捐赠科研通 2931683
什么是DOI,文献DOI怎么找? 1605151
邀请新用户注册赠送积分活动 757705
科研通“疑难数据库(出版商)”最低求助积分说明 734462