SEVERITY OF TRAFFIC ACCIDENTS ON HORIZONTAL CURVES AND THEIR DETERMINANTS: A BAYESIAN NETWORK AND INFORMATION THEORY MODEL

贝叶斯网络 贝叶斯概率 计量经济学 运输工程 计算机科学 环境科学 工程类 数学 人工智能
作者
Tao Sun,Zhan Zhang,Linjun Lu
出处
期刊:Dyna [Publicaciones DYNA]
卷期号:99 (4): 424-432
标识
DOI:10.52152/d11159
摘要

Statistical analysis reveals that the unique environment of horizontal curve roads significantly contributes to the severity and fatality rates of traffic accidents. This study leveraged accident data from the Florida Department of Transportation (FDOT) to explore the severity of traffic accidents on horizontal curves and its influencing factors. Bayesian network was combined with information theory for the analysis of the severity and determinants of accidents on horizontal curves from the perspectives of network topology, the strength of the relationship between influencing factors, and the pathways of influencing factors. Results show that, (1) Traffic accident causation is complex, with a hierarchical network structure of factors rather than direct impacts from individual variables. (2) The strength of the relationship and dynamic change correlation between each variable are obtained. Results demonstrate that accidents are rarely caused by a single factor, and the severity of traffic accidents can be prevented and reduced by controlling variables states.(3) The analysis of the influence pathways of uncontrollable variables, like weather, revealed specific state combinations (e.g., Fog+Slippery, Rain+Slippery, Fog+Wet) that significantly escalate accident severity. This study presents an advanced model for predicting and diagnosing traffic accidents on horizontal curves, offering insights into the causative factors and their quantitative relationships and influence pathways. Keywords:Traffic safety, Horizontal curve, Bayesian network, Information theory, Accident prediction and diagnosis
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
福多多完成签到,获得积分10
4秒前
4秒前
4秒前
积极干饭完成签到 ,获得积分10
4秒前
负责御姐发布了新的文献求助10
5秒前
ABS发布了新的文献求助10
6秒前
开朗哥布林完成签到,获得积分10
6秒前
Alwaite完成签到 ,获得积分10
8秒前
RUSeries发布了新的文献求助10
10秒前
11秒前
Bowman完成签到,获得积分10
13秒前
111发布了新的文献求助30
15秒前
英俊的铭应助坚强的严青采纳,获得10
15秒前
16秒前
Ethan发布了新的文献求助10
16秒前
17秒前
浮光掠影发布了新的文献求助10
18秒前
zzzzzx发布了新的文献求助10
18秒前
RUSeries完成签到,获得积分10
22秒前
23秒前
23秒前
zcqian发布了新的文献求助10
23秒前
24秒前
英俊延恶发布了新的文献求助10
29秒前
景景好发布了新的文献求助10
29秒前
29秒前
指定能行发布了新的文献求助10
30秒前
完美世界应助yangxiao2025采纳,获得20
30秒前
33秒前
健忘的惜雪完成签到,获得积分10
34秒前
Esfec发布了新的文献求助10
34秒前
甘甘发布了新的文献求助10
35秒前
左丘冬寒完成签到,获得积分10
36秒前
37秒前
顾矜应助Esfec采纳,获得10
39秒前
volvoamg发布了新的文献求助10
39秒前
39秒前
许ye完成签到,获得积分10
41秒前
41秒前
李爱国应助文明8采纳,获得10
41秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3244448
求助须知:如何正确求助?哪些是违规求助? 2888090
关于积分的说明 8251392
捐赠科研通 2556542
什么是DOI,文献DOI怎么找? 1385040
科研通“疑难数据库(出版商)”最低求助积分说明 649958
邀请新用户注册赠送积分活动 626063