SEVERITY OF TRAFFIC ACCIDENTS ON HORIZONTAL CURVES AND THEIR DETERMINANTS: A BAYESIAN NETWORK AND INFORMATION THEORY MODEL

贝叶斯网络 贝叶斯概率 计量经济学 运输工程 计算机科学 环境科学 工程类 数学 人工智能
作者
Tao Sun,Zhan Zhang,Linjun Lu
出处
期刊:Dyna [Publicaciones DYNA]
卷期号:99 (4): 424-432
标识
DOI:10.52152/d11159
摘要

Statistical analysis reveals that the unique environment of horizontal curve roads significantly contributes to the severity and fatality rates of traffic accidents. This study leveraged accident data from the Florida Department of Transportation (FDOT) to explore the severity of traffic accidents on horizontal curves and its influencing factors. Bayesian network was combined with information theory for the analysis of the severity and determinants of accidents on horizontal curves from the perspectives of network topology, the strength of the relationship between influencing factors, and the pathways of influencing factors. Results show that, (1) Traffic accident causation is complex, with a hierarchical network structure of factors rather than direct impacts from individual variables. (2) The strength of the relationship and dynamic change correlation between each variable are obtained. Results demonstrate that accidents are rarely caused by a single factor, and the severity of traffic accidents can be prevented and reduced by controlling variables states.(3) The analysis of the influence pathways of uncontrollable variables, like weather, revealed specific state combinations (e.g., Fog+Slippery, Rain+Slippery, Fog+Wet) that significantly escalate accident severity. This study presents an advanced model for predicting and diagnosing traffic accidents on horizontal curves, offering insights into the causative factors and their quantitative relationships and influence pathways. Keywords:Traffic safety, Horizontal curve, Bayesian network, Information theory, Accident prediction and diagnosis
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研猫发布了新的文献求助30
1秒前
标致梦易发布了新的文献求助10
1秒前
空海完成签到,获得积分10
1秒前
1秒前
1秒前
浮游应助奋斗老鼠采纳,获得10
2秒前
大模型应助秋2采纳,获得10
3秒前
4秒前
4秒前
5秒前
松奈子发布了新的文献求助10
5秒前
风中桐完成签到,获得积分10
5秒前
蒙歡完成签到,获得积分10
5秒前
明理夜山发布了新的文献求助10
6秒前
笨笨的外套完成签到,获得积分10
6秒前
科研小白bai完成签到,获得积分10
6秒前
虚心的清发布了新的文献求助10
6秒前
Qi完成签到,获得积分20
7秒前
hj456完成签到,获得积分10
7秒前
王逗逗发布了新的文献求助10
7秒前
7秒前
lqqlqq发布了新的文献求助10
7秒前
8秒前
虚心求学完成签到,获得积分10
8秒前
Gu完成签到,获得积分10
9秒前
哆啦十七应助科研通管家采纳,获得10
9秒前
华仔应助科研通管家采纳,获得10
10秒前
10秒前
完美世界应助科研通管家采纳,获得10
10秒前
彭于晏应助科研通管家采纳,获得30
10秒前
哆啦十七应助科研通管家采纳,获得10
10秒前
SciGPT应助科研通管家采纳,获得30
10秒前
子车茗应助科研通管家采纳,获得20
10秒前
10秒前
香蕉觅云应助科研通管家采纳,获得30
10秒前
余晖完成签到,获得积分10
10秒前
子车茗应助科研通管家采纳,获得20
10秒前
无花果应助MHY采纳,获得10
10秒前
赘婿应助科研通管家采纳,获得30
10秒前
Ava应助科研通管家采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5351999
求助须知:如何正确求助?哪些是违规求助? 4484908
关于积分的说明 13961093
捐赠科研通 4384639
什么是DOI,文献DOI怎么找? 2409094
邀请新用户注册赠送积分活动 1401552
关于科研通互助平台的介绍 1375095