Prediction of teicoplanin plasma concentration in critically ill patients: a combination of machine learning and population pharmacokinetics

替考拉宁 加药 特征选择 范畴变量 人口 医学 支持向量机 统计 机器学习 人工智能 计算机科学 数学 内科学 生物 万古霉素 金黄色葡萄球菌 环境卫生 细菌 遗传学
作者
Pan Ma,Shenglan Shang,Ruixiang Liu,Yuzhu Dong,Jiangfan Wu,Wenrui Gu,Mengchen Yu,Jing Liu,Ying Li,Yongchuan Chen
出处
期刊:Journal of Antimicrobial Chemotherapy [Oxford University Press]
卷期号:79 (11): 2815-2827
标识
DOI:10.1093/jac/dkae292
摘要

Abstract Background Teicoplanin has been widely used in patients with infections caused by Staphylococcus aureus, especially for critically ill patients. The pharmacokinetics (PK) of teicoplanin vary between individuals and within the same individual. We aim to establish a prediction model via a combination of machine learning and population PK (PPK) to support personalized medication decisions for critically ill patients. Methods A retrospective study was performed incorporating 33 variables, including PPK parameters (clearance and volume of distribution). Multiple algorithms and Shapley additive explanations were employed for feature selection of variables to determine the strongest driving factors. Results The performance of each algorithm with PPK parameters was superior to that without PPK parameters. The composition of support vector regression, categorical boosting and a backpropagation neural network (7:2:1) with the highest R2 (0.809) was determined as the final ensemble model. The model included 15 variables after feature selection, of which the predictive performance was superior to that of models considering all variables or using only PPK. The R2, mean absolute error, mean squared error, absolute accuracy (±5 mg/L) and relative accuracy (±30%) of external validation were 0.649, 3.913, 28.347, 76.12% and 76.12%, respectively. Conclusions Our study offers a non-invasive, fast and cost-effective prediction model of teicoplanin plasma concentration in critically ill patients. The model serves as a fundamental tool for clinicians to determine the effective plasma concentration range of teicoplanin and formulate individualized dosing regimens accordingly.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
过时的电灯胆完成签到 ,获得积分10
刚刚
刚刚
wanli发布了新的文献求助20
1秒前
牧长一完成签到 ,获得积分0
1秒前
yalan完成签到,获得积分10
2秒前
3秒前
爆米花应助Dawn采纳,获得10
4秒前
5秒前
Emilio发布了新的文献求助10
5秒前
胖虎完成签到,获得积分10
7秒前
8秒前
8秒前
9秒前
9秒前
zjj发布了新的文献求助10
10秒前
JamesPei应助曾无忧采纳,获得10
10秒前
NK.cell完成签到,获得积分10
10秒前
10秒前
11秒前
FashionBoy应助号左左采纳,获得10
11秒前
Ava应助傅双庆采纳,获得10
12秒前
FashionBoy应助Lin采纳,获得10
12秒前
金轩完成签到 ,获得积分10
12秒前
香蕉觅云应助泡泡采纳,获得10
13秒前
kiminonawa发布了新的文献求助10
16秒前
16秒前
磨磨唧唧应助neufy采纳,获得10
16秒前
苹果果汁完成签到,获得积分20
17秒前
18秒前
无花果应助cbwmax采纳,获得10
18秒前
虚拟的落雁完成签到,获得积分10
19秒前
19秒前
21秒前
gjcAurora发布了新的文献求助10
21秒前
21秒前
23秒前
zjj完成签到,获得积分10
24秒前
25秒前
Lin发布了新的文献求助10
26秒前
朱小迪发布了新的文献求助10
26秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3228046
求助须知:如何正确求助?哪些是违规求助? 2875959
关于积分的说明 8193272
捐赠科研通 2543114
什么是DOI,文献DOI怎么找? 1373502
科研通“疑难数据库(出版商)”最低求助积分说明 646781
邀请新用户注册赠送积分活动 621276