期刊:ACS ES&T water [American Chemical Society] 日期:2024-07-30卷期号:4 (8): 3558-3567被引量:1
标识
DOI:10.1021/acsestwater.4c00442
摘要
Fenton oxidation is highly efficient for removing pollutants from wastewater. However, the low utilization efficiency of oxidants increases operating costs and limits their application in water treatment. To address these issues, this study designed a novel Fenton-like catalyst: zerovalent iron/amorphous manganese composites (ZVI-Mn). This catalyst can activate O2 in situ to generate H2O2 and simultaneously activate H2O2 to produce free radicals, achieving a 96.3% removal efficiency of enrofloxacin (ENR) from water. Radical quenching experiments showed that superoxide radicals (•O2–) (46%) play a dominant role in ENR removal, while hydroxyl radicals (•OH) (28.2%) and singlet oxygen (1O2) (25.8%) also participate. Liquid chromatography–mass spectrometry (LC–MS), density functional theory (DFT) calculations, and toxicity estimations demonstrated effective ENR degradation and significant toxicity reduction of the intermediates, primarily through decarboxylation and ring opening. Additionally, ZVI-Mn achieved a 90.1% removal efficiency of ENR in aquaculture wastewater. This study proposes a new Fenton oxidation technique based on the in situ generation of H2O2, providing a meaningful research basis for environmentally friendly water treatment technologies.