Au nanoparticles decorated graphitic carbon nitride nanosheets as a sensitive and selective fluorescence probe for Fe3+ and dichromate ions in aqueous medium
Graphitic carbon nitride mutated with metal nanoparticles has captivated great interest as an effective fluorescent sensor for the detection of harmful ions present in water. In the present work, bulk-gCN was synthesized using melamine as precursor, and further Au-gCN nanocomposite were fabricated via in-situ direct reduction deposition method. The structural, morphological, compositional, stability and optical properties of bulk gCN and Au-gCN nanocomposite were examined using various scattering and spectroscopic techniques such as HRTEM, XPS, XRD and SEM. The synthesized bulk gCN straggles during selectivity studies with different cations and anions because of its uneven surface morphology, however in Au-gCN gold nanoparticles are uniformly distributed on the gCN sheets which results in its enhanced selectivity over bulk gCN. This leads to the fabrication of an optical sensor for Fe