Multimodality Data Augmentation Network for Arrhythmia Classification

多模态 卷积神经网络 特征(语言学) 计算机科学 人工智能 心律失常 模式识别(心理学) 匹配(统计) 室上性心律失常 医学 内科学 心房颤动 万维网 哲学 语言学 病理
作者
Zhimin Xu,Mujun Zang,Tong Liu,Zhihao Wang,Shusen Zhou,Chanjuan Liu,Qingjun Wang
出处
期刊:International Journal of Intelligent Systems [Wiley]
卷期号:2024 (1)
标识
DOI:10.1155/2024/9954821
摘要

Arrhythmia is a prevalent cardiovascular disease, which has garnered widespread attention due to its age‐related increases in mortality rates. In the analysis of arrhythmia, the electrocardiogram (ECG) plays an important role. Arrhythmia classification often suffers from a significant data imbalance issue due to the limited availability of data for certain arrhythmia categories. This imbalance problem significantly affects the classification performance of the model. To address this challenge, data augmentation emerges as a viable solution, aiming to neutralize the adverse effects of imbalanced datasets on the model. To this end, this paper proposes a novel Multimodality Data Augmentation Network (MM‐DANet) for arrhythmia classification. The MM‐DANet consists of two modules: the multimodality data matching‐based data augmentation module and the multimodality feature encoding module. In the multimodality data matching‐based data augmentation module, we expand the underrepresented arrhythmia categories to match the size of the largest category. Subsequently, the multimodality feature encoding module employs convolutional neural networks (CNN) to extract the modality‐specific features from both signals and images and concatenate them for efficient and accurate classification. The MM‐DANet was evaluated on the MIT‐BIH Arrhythmia Database and achieving an accuracy of 98.83%, along with an average specificity of 98.87%, average sensitivity of 92.92%, average precision of 91.05%, and average F 1_score of 91.96%. Furthermore, its performance was also assessed on the St. Petersburg INCART arrhythmia database and the MIT‐BIH supraventricular arrhythmia database, yielding AUC values of 81.98% and 90.93%, respectively. These outstanding results not only underscore the effectiveness of MM‐DANet but also indicate its potential for facilitating reliable automated analysis of arrhythmias.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
chen完成签到,获得积分10
刚刚
yyy完成签到,获得积分10
1秒前
天真小蚂蚁完成签到,获得积分10
1秒前
2秒前
岁岁几祈愿完成签到 ,获得积分10
2秒前
lilili应助haojinxiu采纳,获得10
3秒前
3秒前
4秒前
xxdn发布了新的文献求助10
4秒前
ZSQQZX发布了新的文献求助10
5秒前
浮游应助天真稀采纳,获得10
6秒前
6秒前
kai发布了新的文献求助10
7秒前
葳蕤完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助10
7秒前
好运常在完成签到 ,获得积分10
7秒前
露露完成签到,获得积分10
8秒前
熬夜猫完成签到,获得积分10
8秒前
8秒前
赖问筠完成签到 ,获得积分10
9秒前
852应助柚一采纳,获得10
9秒前
希望天下0贩的0应助Vva采纳,获得10
9秒前
JJ完成签到,获得积分10
10秒前
苇一发布了新的文献求助10
10秒前
付冀川完成签到,获得积分10
10秒前
露露发布了新的文献求助10
11秒前
cindy完成签到,获得积分10
11秒前
科研通AI6应助科研通管家采纳,获得10
12秒前
一壶古酒应助科研通管家采纳,获得10
12秒前
科研通AI5应助科研通管家采纳,获得10
12秒前
13秒前
在水一方应助科研通管家采纳,获得10
13秒前
华仔应助科研通管家采纳,获得10
13秒前
寒江雪应助科研通管家采纳,获得150
13秒前
13秒前
无花果应助科研通管家采纳,获得10
13秒前
科研通AI6应助科研通管家采纳,获得10
13秒前
寒江雪应助科研通管家采纳,获得150
13秒前
大模型应助科研通管家采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
Why Neuroscience Matters in the Classroom 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5048536
求助须知:如何正确求助?哪些是违规求助? 4276936
关于积分的说明 13331894
捐赠科研通 4091472
什么是DOI,文献DOI怎么找? 2239048
邀请新用户注册赠送积分活动 1245948
关于科研通互助平台的介绍 1174503