Multimodality Data Augmentation Network for Arrhythmia Classification

多模态 卷积神经网络 特征(语言学) 计算机科学 人工智能 心律失常 模式识别(心理学) 匹配(统计) 室上性心律失常 医学 内科学 心房颤动 万维网 哲学 语言学 病理
作者
Zhimin Xu,Mujun Zang,Tong Liu,Zhihao Wang,Shusen Zhou,Chanjuan Liu,Qingjun Wang
出处
期刊:International Journal of Intelligent Systems [Wiley]
卷期号:2024 (1)
标识
DOI:10.1155/2024/9954821
摘要

Arrhythmia is a prevalent cardiovascular disease, which has garnered widespread attention due to its age‐related increases in mortality rates. In the analysis of arrhythmia, the electrocardiogram (ECG) plays an important role. Arrhythmia classification often suffers from a significant data imbalance issue due to the limited availability of data for certain arrhythmia categories. This imbalance problem significantly affects the classification performance of the model. To address this challenge, data augmentation emerges as a viable solution, aiming to neutralize the adverse effects of imbalanced datasets on the model. To this end, this paper proposes a novel Multimodality Data Augmentation Network (MM‐DANet) for arrhythmia classification. The MM‐DANet consists of two modules: the multimodality data matching‐based data augmentation module and the multimodality feature encoding module. In the multimodality data matching‐based data augmentation module, we expand the underrepresented arrhythmia categories to match the size of the largest category. Subsequently, the multimodality feature encoding module employs convolutional neural networks (CNN) to extract the modality‐specific features from both signals and images and concatenate them for efficient and accurate classification. The MM‐DANet was evaluated on the MIT‐BIH Arrhythmia Database and achieving an accuracy of 98.83%, along with an average specificity of 98.87%, average sensitivity of 92.92%, average precision of 91.05%, and average F 1_score of 91.96%. Furthermore, its performance was also assessed on the St. Petersburg INCART arrhythmia database and the MIT‐BIH supraventricular arrhythmia database, yielding AUC values of 81.98% and 90.93%, respectively. These outstanding results not only underscore the effectiveness of MM‐DANet but also indicate its potential for facilitating reliable automated analysis of arrhythmias.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
456244yyy发布了新的文献求助10
1秒前
笨笨甜瓜发布了新的文献求助50
2秒前
小马甲应助星际采纳,获得10
2秒前
畅跑daily发布了新的文献求助10
3秒前
大辉完成签到,获得积分10
4秒前
小二郎应助文静青烟采纳,获得10
4秒前
MascaraEd发布了新的文献求助10
4秒前
开心友儿完成签到,获得积分10
5秒前
彭于晏应助糖糖采纳,获得10
5秒前
Echo完成签到 ,获得积分10
6秒前
Liudi完成签到,获得积分10
6秒前
田様应助Huying采纳,获得10
8秒前
Liudi发布了新的文献求助10
9秒前
科研狗完成签到,获得积分10
10秒前
无限的易云完成签到,获得积分10
10秒前
Akim应助滴滴采纳,获得10
12秒前
shuangyanli完成签到,获得积分10
12秒前
JamesPei应助谦让的青亦采纳,获得10
12秒前
13秒前
IBMffff应助颉颉采纳,获得10
13秒前
13秒前
13秒前
14秒前
14秒前
qianmo完成签到,获得积分10
15秒前
lolo发布了新的文献求助10
16秒前
传奇3应助踏实树叶采纳,获得10
17秒前
Akim应助唯安采纳,获得10
18秒前
tongbuxiang关注了科研通微信公众号
18秒前
小二郎应助阳光万声采纳,获得10
18秒前
18秒前
18秒前
18秒前
18秒前
19秒前
边路舰长发布了新的文献求助10
19秒前
liu11发布了新的文献求助10
19秒前
20秒前
小医小鱼完成签到,获得积分10
21秒前
Lucas应助称心乐枫采纳,获得10
21秒前
高分求助中
Sustainability in Tides Chemistry 2800
Shape Determination of Large Sedimental Rock Fragments 2000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Defense against predation 800
A Dissection Guide & Atlas to the Rabbit 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3132974
求助须知:如何正确求助?哪些是违规求助? 2784219
关于积分的说明 7765186
捐赠科研通 2439347
什么是DOI,文献DOI怎么找? 1296754
科研通“疑难数据库(出版商)”最低求助积分说明 624678
版权声明 600771