Multimodality Data Augmentation Network for Arrhythmia Classification

多模态 卷积神经网络 特征(语言学) 计算机科学 人工智能 心律失常 模式识别(心理学) 匹配(统计) 室上性心律失常 医学 内科学 心房颤动 万维网 哲学 语言学 病理
作者
Zhimin Xu,Mujun Zang,Tong Liu,Zhihao Wang,Shusen Zhou,Chanjuan Liu,Qingjun Wang
出处
期刊:International Journal of Intelligent Systems [Wiley]
卷期号:2024 (1)
标识
DOI:10.1155/2024/9954821
摘要

Arrhythmia is a prevalent cardiovascular disease, which has garnered widespread attention due to its age‐related increases in mortality rates. In the analysis of arrhythmia, the electrocardiogram (ECG) plays an important role. Arrhythmia classification often suffers from a significant data imbalance issue due to the limited availability of data for certain arrhythmia categories. This imbalance problem significantly affects the classification performance of the model. To address this challenge, data augmentation emerges as a viable solution, aiming to neutralize the adverse effects of imbalanced datasets on the model. To this end, this paper proposes a novel Multimodality Data Augmentation Network (MM‐DANet) for arrhythmia classification. The MM‐DANet consists of two modules: the multimodality data matching‐based data augmentation module and the multimodality feature encoding module. In the multimodality data matching‐based data augmentation module, we expand the underrepresented arrhythmia categories to match the size of the largest category. Subsequently, the multimodality feature encoding module employs convolutional neural networks (CNN) to extract the modality‐specific features from both signals and images and concatenate them for efficient and accurate classification. The MM‐DANet was evaluated on the MIT‐BIH Arrhythmia Database and achieving an accuracy of 98.83%, along with an average specificity of 98.87%, average sensitivity of 92.92%, average precision of 91.05%, and average F 1_score of 91.96%. Furthermore, its performance was also assessed on the St. Petersburg INCART arrhythmia database and the MIT‐BIH supraventricular arrhythmia database, yielding AUC values of 81.98% and 90.93%, respectively. These outstanding results not only underscore the effectiveness of MM‐DANet but also indicate its potential for facilitating reliable automated analysis of arrhythmias.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小李完成签到,获得积分10
2秒前
7秒前
Ava应助龙骑士25采纳,获得10
11秒前
朱荧荧发布了新的文献求助10
12秒前
PetrichorF完成签到 ,获得积分10
13秒前
像风一样自由完成签到 ,获得积分10
18秒前
科研闲人完成签到,获得积分10
19秒前
22秒前
25秒前
儒雅的焦完成签到 ,获得积分10
25秒前
李锐发布了新的文献求助10
26秒前
27秒前
英姑应助AoAoo采纳,获得10
28秒前
ZJH完成签到 ,获得积分10
31秒前
淅淅发布了新的文献求助10
32秒前
fff发布了新的文献求助10
32秒前
33秒前
李锐完成签到,获得积分10
34秒前
AoAoo发布了新的文献求助10
39秒前
南城忆潇湘完成签到,获得积分10
41秒前
Mic应助淅淅采纳,获得10
43秒前
黎其完成签到,获得积分10
52秒前
热衷完成签到,获得积分10
52秒前
徐笑松发布了新的文献求助10
55秒前
aaa完成签到,获得积分10
56秒前
科研通AI6.1应助菲菲采纳,获得10
58秒前
AoAoo发布了新的文献求助10
1分钟前
yang完成签到 ,获得积分10
1分钟前
MRshenyy完成签到,获得积分10
1分钟前
CNY完成签到 ,获得积分10
1分钟前
希望天下0贩的0应助yw采纳,获得10
1分钟前
Thanatos完成签到,获得积分10
1分钟前
勤奋幻柏完成签到,获得积分10
1分钟前
星之所在完成签到,获得积分10
1分钟前
搜集达人应助AoAoo采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
高分求助中
Yangtze Reminiscences. Some Notes And Recollections Of Service With The China Navigation Company Ltd., 1925-1939 800
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
T/SNFSOC 0002—2025 独居石精矿碱法冶炼工艺技术标准 300
The Impact of Lease Accounting Standards on Lending and Investment Decisions 250
The Linearization Handbook for MILP Optimization: Modeling Tricks and Patterns for Practitioners (MILP Optimization Handbooks) 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5852235
求助须知:如何正确求助?哪些是违规求助? 6277178
关于积分的说明 15627824
捐赠科研通 4968117
什么是DOI,文献DOI怎么找? 2678906
邀请新用户注册赠送积分活动 1623170
关于科研通互助平台的介绍 1579534