Multimodality Data Augmentation Network for Arrhythmia Classification

多模态 卷积神经网络 特征(语言学) 计算机科学 人工智能 心律失常 模式识别(心理学) 匹配(统计) 室上性心律失常 医学 内科学 心房颤动 语言学 万维网 哲学 病理
作者
Zhimin Xu,Mujun Zang,Tong Liu,Zhihao Wang,Shusen Zhou,Chanjuan Liu,Qingjun Wang
出处
期刊:International Journal of Intelligent Systems [Wiley]
卷期号:2024 (1)
标识
DOI:10.1155/2024/9954821
摘要

Arrhythmia is a prevalent cardiovascular disease, which has garnered widespread attention due to its age‐related increases in mortality rates. In the analysis of arrhythmia, the electrocardiogram (ECG) plays an important role. Arrhythmia classification often suffers from a significant data imbalance issue due to the limited availability of data for certain arrhythmia categories. This imbalance problem significantly affects the classification performance of the model. To address this challenge, data augmentation emerges as a viable solution, aiming to neutralize the adverse effects of imbalanced datasets on the model. To this end, this paper proposes a novel Multimodality Data Augmentation Network (MM‐DANet) for arrhythmia classification. The MM‐DANet consists of two modules: the multimodality data matching‐based data augmentation module and the multimodality feature encoding module. In the multimodality data matching‐based data augmentation module, we expand the underrepresented arrhythmia categories to match the size of the largest category. Subsequently, the multimodality feature encoding module employs convolutional neural networks (CNN) to extract the modality‐specific features from both signals and images and concatenate them for efficient and accurate classification. The MM‐DANet was evaluated on the MIT‐BIH Arrhythmia Database and achieving an accuracy of 98.83%, along with an average specificity of 98.87%, average sensitivity of 92.92%, average precision of 91.05%, and average F 1_score of 91.96%. Furthermore, its performance was also assessed on the St. Petersburg INCART arrhythmia database and the MIT‐BIH supraventricular arrhythmia database, yielding AUC values of 81.98% and 90.93%, respectively. These outstanding results not only underscore the effectiveness of MM‐DANet but also indicate its potential for facilitating reliable automated analysis of arrhythmias.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
wxxz完成签到,获得积分10
3秒前
威武红酒完成签到 ,获得积分10
3秒前
双碳小王子完成签到,获得积分10
4秒前
www完成签到 ,获得积分10
4秒前
韭菜盒子发布了新的文献求助10
5秒前
SCI完成签到 ,获得积分10
7秒前
keyan完成签到 ,获得积分10
8秒前
格子完成签到,获得积分10
8秒前
hzl完成签到,获得积分10
8秒前
梅花易数完成签到,获得积分10
9秒前
量子星尘发布了新的文献求助10
10秒前
chenmeimei2012完成签到 ,获得积分10
11秒前
那时年少完成签到,获得积分10
13秒前
14秒前
feng完成签到,获得积分10
16秒前
18秒前
19秒前
woyaojiayou完成签到,获得积分10
20秒前
儒雅以云完成签到,获得积分10
21秒前
GreenT完成签到,获得积分10
22秒前
X519664508完成签到,获得积分0
22秒前
tangchao完成签到,获得积分10
23秒前
accepted发布了新的文献求助30
23秒前
雪寒完成签到,获得积分10
24秒前
石幻枫完成签到 ,获得积分0
25秒前
27秒前
amber完成签到 ,获得积分10
27秒前
Green完成签到,获得积分10
29秒前
牧青发布了新的文献求助10
30秒前
典雅葶完成签到 ,获得积分10
33秒前
34秒前
淡然以柳完成签到 ,获得积分10
35秒前
38秒前
38秒前
尊敬怀薇完成签到,获得积分10
39秒前
yy完成签到,获得积分10
39秒前
花花完成签到 ,获得积分10
40秒前
慕容杏子完成签到,获得积分10
41秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015670
求助须知:如何正确求助?哪些是违规求助? 3555644
关于积分的说明 11318192
捐赠科研通 3288842
什么是DOI,文献DOI怎么找? 1812284
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812015