ARCH模型
条件方差
文件夹
计量经济学
波动性(金融)
计算机科学
水准点(测量)
人工神经网络
多元统计
投资组合优化
经济
人工智能
机器学习
金融经济学
地理
大地测量学
作者
Martin Burda,Anika Schroeder
出处
期刊:Journal of Time Series Econometrics
[De Gruyter]
日期:2024-07-16
标识
DOI:10.1515/jtse-2023-0012
摘要
Abstract We develop a hybrid model of multivariate volatility that uses recurrent neural networks to capture the conditional variances of latent orthogonal factors in a GO-GARCH framework. Our approach seeks to balance model flexibility with ease of estimation and can be used to model conditional covariances of a large number of assets. The model performs favourably in comparison with relevant benchmark models in a minimum variance portfolio (MVP) scenario.
科研通智能强力驱动
Strongly Powered by AbleSci AI