强化学习
计算机科学
钢筋
放射治疗
人工智能
工程类
医学
内科学
结构工程
作者
Can Li,Yuqi Guo,Xinyan Lin,Xuezhen Feng,Dachuan Xu,Ruijie Yang
出处
期刊:Physica Medica
[Elsevier]
日期:2024-08-19
卷期号:125: 104498-104498
被引量:1
标识
DOI:10.1016/j.ejmp.2024.104498
摘要
The formulation and optimization of radiation therapy plans are complex and time-consuming processes that heavily rely on the expertise of medical physicists. Consequently, there is an urgent need for automated optimization methods. Recent advancements in reinforcement learning, particularly deep reinforcement learning (DRL), show great promise for automating radiotherapy planning. This review summarizes the current state of DRL applications in this field, evaluates their effectiveness, and identifies challenges and future directions.
科研通智能强力驱动
Strongly Powered by AbleSci AI