Investigation of the influence of the rivet geometry on joint formation for a versatile self-piercing riveting process

铆钉 过程(计算) 接头(建筑物) 机械工程 主管(地质) 结构工程 GSM演进的增强数据速率 工程类 材料科学 计算机科学 地质学 电信 操作系统 地貌学
作者
F. Kappe,Mathias Bobbert,Gerson Meschut
标识
DOI:10.1177/09544089241263141
摘要

Climate change has led to a large number of countries deciding to reduce carbon dioxide (CO 2 ) emissions significantly. As the mobility sector is a major contributor to CO 2 , various strategies are being pursued to achieve the climate targets set. An increasingly applied lightweight design method is the use of multi-material constructions. To join these structures, mechanical joining technologies such as self-pierce riveting are being used. As a result of the currently rigid tool systems, which cannot react to changing boundary conditions, a large number of rivet–die combinations is required to join the rising number of materials as well as material thickness combinations. Thus, new, versatile joining technologies are needed that can react to the described changes. The versatile self-piercing riveting (V-SPR) process is one possible approach. In this process, different material thicknesses can be joined by using a multi-range capable rivet which is set by a joining system with extended actuator technology. In this study, the V-SPR joining process is analysed numerically according to the influence of the geometrical rivet parameters on the joints characteristics as well as the resulting material flow. The investigations showed that the shank geometry has a decisive influence on the expansion of the rivet. Furthermore, the rivet length could be proven to be an influencing factor. By changing the head radii and the protrusion height, the forming behaviour of the rivet head onto the punch-sided joining part could be improved and thus the formation of air pockets was prevented. Based on the numerical investigations, a novel rivet geometry was developed and produced by machining. Subsequently, experimentally produced joints were analysed according to their joint formation and load-bearing capacity.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
所所应助gaochanglu采纳,获得10
刚刚
1秒前
xxlj完成签到,获得积分10
1秒前
聪明的归尘完成签到,获得积分10
1秒前
leiqin发布了新的文献求助10
1秒前
2秒前
量子星尘发布了新的文献求助10
2秒前
咸柴完成签到,获得积分10
3秒前
GG发布了新的文献求助10
3秒前
可靠猎豹完成签到,获得积分10
3秒前
OGLE应助LU采纳,获得20
4秒前
4秒前
4秒前
5秒前
曹梦梦完成签到,获得积分10
6秒前
6秒前
6秒前
7秒前
7秒前
友好太兰完成签到,获得积分10
7秒前
黑米粥发布了新的文献求助10
8秒前
9秒前
9秒前
9秒前
slayersqin完成签到 ,获得积分10
9秒前
在水一方应助111采纳,获得10
9秒前
小罗黑的发布了新的文献求助10
10秒前
11秒前
明昼完成签到,获得积分10
11秒前
11秒前
11秒前
多巴胺完成签到,获得积分10
11秒前
12秒前
微笑迎曼发布了新的文献求助30
12秒前
六六发布了新的文献求助10
12秒前
哈哈哈发布了新的文献求助10
12秒前
杨锐发布了新的文献求助10
12秒前
Hello应助oo采纳,获得10
12秒前
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Biotechnology Engineering 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5629991
求助须知:如何正确求助?哪些是违规求助? 4721324
关于积分的说明 14972153
捐赠科研通 4788008
什么是DOI,文献DOI怎么找? 2556688
邀请新用户注册赠送积分活动 1517740
关于科研通互助平台的介绍 1478342