Temperature-adaptive metasurface radiative cooling device with excellent emittance and low solar absorptance for dynamic thermal regulation

热发射率 吸收率 热的 辐射冷却 辐射传输 材料科学 光学 物理 光电子学 气象学 反射率 梁(结构)
作者
Junlin Yang,Qianyi Li,Shiqiao Liu,Debao Fang,Jingyao Zhang,Haibo Jin,Jingbo Li
出处
期刊:Advanced photonics [SPIE - International Society for Optical Engineering]
卷期号:6 (04)
标识
DOI:10.1117/1.ap.6.4.046006
摘要

Passive radiative cooling is a promising passive cooling technology that emits heat to deep space without energy consumption. Nevertheless, the persistent challenge of overcooling in static radiative techniques has raised concerns. Although a desirable solution is suggested based on vanadium dioxide (VO2) in the form of a Fabry–Perot (F–P) resonant cavity, the inherent contradiction between desired high emissivity (ε) and low solar absorptance (αsol) remains a notable limitation. Here, we employed a simple mask-filling technique to develop a temperature-adaptive metasurface radiative cooling device (ATMRD) for dynamic thermal regulation. Simulation and experimental results substantially evidenced that multiple localized polariton resonances were induced by the VO2 metasurface, significantly enhancing the thermal emittance of the ATMRDs. The engineered ATMRD achieved an amazing switch of the atmospheric window emittance from 0.13 to 0.85 when the surface temperature exceeds a pre-set transition temperature, accompanied by a commendable αsol of 27.71%. The mechanism of multiple localized polariton resonances is discussed in detail to understand the enhanced performance based on the investigation of the relationship between the metasurface structure and multiple localized polariton resonances. We demonstrate an efficient smart radiative technique achieved by a simple micro/nanoprocess and, most importantly, contribute a valuable reference for the design of radiative devices, which is crucial in various areas such as passive cooling, smart windows, multifunctional electromagnetic response, and space application technologies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
WHL完成签到,获得积分10
1秒前
JiaqiLiu完成签到,获得积分10
1秒前
1秒前
orixero应助charon采纳,获得10
1秒前
1秒前
1秒前
2秒前
2秒前
可爱的函函应助娜行采纳,获得10
2秒前
鱼圆杂铺完成签到 ,获得积分10
2秒前
Danielle完成签到,获得积分10
2秒前
3秒前
3秒前
3秒前
呆呆发布了新的文献求助10
3秒前
只只完成签到,获得积分20
3秒前
WNL发布了新的文献求助10
4秒前
彭珊完成签到,获得积分10
4秒前
Rocky发布了新的文献求助10
4秒前
Charon922完成签到,获得积分10
4秒前
4秒前
酒尚温发布了新的文献求助50
4秒前
4秒前
科目三应助黑米粥采纳,获得10
5秒前
共享精神应助AnasYusuf采纳,获得10
5秒前
5秒前
嘟嘟金子完成签到,获得积分10
5秒前
wyh发布了新的文献求助10
5秒前
好了发布了新的文献求助10
5秒前
善良的远锋完成签到,获得积分10
5秒前
愉快的冰珍完成签到 ,获得积分20
6秒前
个木完成签到,获得积分20
6秒前
一平发布了新的文献求助10
7秒前
7秒前
乐观期待发布了新的文献求助30
7秒前
小蘑菇应助Ricardo采纳,获得10
7秒前
抓恐龙发布了新的文献求助10
7秒前
8秒前
123完成签到,获得积分20
8秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678