Decoupled Temperature–Pressure Sensing System for Deep Learning Assisted Human–Machine Interaction

材料科学 纳米技术 人工智能 计算机科学
作者
Zhaoyang Chen,Shun Liu,Pengyuan Kang,Yalong Wang,Hu Liu,Chuntai Liu,Changyu Shen
出处
期刊:Advanced Functional Materials [Wiley]
卷期号:34 (52) 被引量:50
标识
DOI:10.1002/adfm.202411688
摘要

Abstract With the rapid development of intelligent wearable technology, multimodal tactile sensors capable of data acquisition, decoupling of intermixed signals, and information processing have attracted increasing attention. Herein, a decoupled temperature–pressure dual‐mode sensor is developed based on single‐walled carbon nanotubes (SWCNT) and poly(3,4‐ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT:PSS) decorated porous melamine foam (MF), integrating with a deep learning algorithm to obtain a multimodal input terminal. Importantly, the synergistic effect of PEDOT:PSS and SWCNT facilitates the sensor with ideal decoupling capability and sensitivity toward both temperature (38.2 µV K −1 ) and pressure (10.8% kPa −1 ) based on the thermoelectric and piezoresistive effects, respectively. Besides, the low thermal conductivity and excellent compressibility of MF also endow it with the merits of a low‐temperature detection limit (0.03 K), fast pressure response (120 ms), and long‐term stability. Benefiting from the outstanding sensing characteristics, the assembled sensor array showcases good capacity for identifying spatial distribution of temperature and pressure signals. With the assistance of a deep learning algorithm, it displays high recognition accuracy of 99% and 98% corresponding to “touch” and “press” actions, respectively, and realizes the encrypted transmission of information and accurate identification of random input sequences, providing a promising strategy for the design of high‐accuracy multimodal sensing platform in human–machine interaction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
666发布了新的文献求助10
刚刚
刚刚
¥#¥-11发布了新的文献求助10
1秒前
Hilda007应助科研通管家采纳,获得10
1秒前
顾矜应助科研通管家采纳,获得10
1秒前
Raven应助科研通管家采纳,获得10
1秒前
科目三应助科研通管家采纳,获得10
1秒前
orixero应助科研通管家采纳,获得10
1秒前
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
李健应助科研通管家采纳,获得10
1秒前
JamesPei应助科研通管家采纳,获得10
1秒前
Lucas应助科研通管家采纳,获得10
1秒前
2秒前
李爱国应助科研通管家采纳,获得10
2秒前
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
爆米花应助科研通管家采纳,获得10
2秒前
bkagyin应助科研通管家采纳,获得10
2秒前
坦率耳机应助zl123采纳,获得30
2秒前
今后应助科研通管家采纳,获得10
2秒前
LZY完成签到,获得积分10
2秒前
无花果应助科研通管家采纳,获得10
2秒前
子车茗应助谦让疾采纳,获得30
2秒前
在水一方应助科研通管家采纳,获得10
2秒前
汉堡包应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
完美世界应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
bkagyin应助科研通管家采纳,获得10
2秒前
2秒前
hangover完成签到,获得积分10
2秒前
大家好车架号h完成签到,获得积分10
2秒前
安慕希完成签到,获得积分20
2秒前
汉堡包应助茶暖采纳,获得10
3秒前
xxy完成签到,获得积分10
3秒前
烟花应助橘漓儿采纳,获得10
3秒前
的地方法规完成签到,获得积分10
3秒前
科研通AI6应助FFFF采纳,获得10
4秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5402234
求助须知:如何正确求助?哪些是违规求助? 4520826
关于积分的说明 14082112
捐赠科研通 4434847
什么是DOI,文献DOI怎么找? 2434434
邀请新用户注册赠送积分活动 1426649
关于科研通互助平台的介绍 1405392