等离子体子
联轴节(管道)
电介质
金属
纳米结构
材料科学
纳米技术
光电子学
化学物理
物理
凝聚态物理
冶金
作者
Jingyu Wang,Sanping Wu,Weimin Yang,Xiaojun Tian
摘要
The nanoscale ampification of light-matter interactions exhibits profound potential in multiple scientific fields, such as physics, chemistry, surface science, materials science, and nanophotonics. Nonetheless, achieving robust optical mode coupling within cavities faces significant hurdles due to modal dispersion and weak optical field confinement. In this theoretical investigation, we demonstrate the viability of strong coupling between the anapole mode of a slotted silicon nanodisk and the plasmonic modes of an Ag nanodisk dimer at visible light frequencies. By introducing anapole modes, we successfully confine light to subwavelength volumes, suppressing radiative losses and achieving a remarkable Rabi splitting of 468 meV. This substantial coupling is facilitated by the large spatial overlap of intense optical fields. Capitalizing on this strong mode coupling, we generate novel hybrid energy states with significant electromagnetic field enhancement. Our study serves as a valuable blueprint for designing platforms based on strong anapole mode coupling at visible frequencies and paves the way for deeper explorations into nanoscale light-matter interactions.
科研通智能强力驱动
Strongly Powered by AbleSci AI