阿利效应
类型(生物学)
控制理论(社会学)
流行病模型
分叉
逻辑函数
霍普夫分叉
反馈控制
控制(管理)
数学
应用数学
逻辑回归
经济
计算机科学
物理
生物
人口学
统计
生态学
非线性系统
人工智能
工程类
控制工程
社会学
人口
量子力学
作者
Qun Zhu,Zhong Li,Fengde Chen
标识
DOI:10.1142/s179352452450116x
摘要
In this paper, a single-species logistic model with both fear effect-type feedback control and additive Allee effect is developed and investigated using the new coronavirus as a feedback control variable. When the system introduces additive Allee effect and fear effect-type feedback control, more complicated dynamical behavior is obtained. The system can undergo transcritical bifurcation, saddle-node bifurcation, degenerate Hopf bifurcation and Bogdanov–Takens bifurcation. By numerical simulations, the system exhibits homoclinic bifurcation and saddle-node bifurcation of limit cycles as parameters are altered. Remarkably, it is the first time that two limit cycles have been discovered in a single-species logistic model with the Allee effect. Further, stronger Allee effect or stronger fear effect can lead to the extinction of the species population.
科研通智能强力驱动
Strongly Powered by AbleSci AI