催化作用
电化学
氧化还原
化学
氧化态
配体(生物化学)
循环伏安法
电子结构
拉曼光谱
X射线吸收光谱法
金属
反应机理
吸收光谱法
光化学
物理化学
无机化学
计算化学
电极
光学
物理
量子力学
受体
有机化学
生物化学
作者
Frédéric Jaouen,Yachao Zeng,Jian Zhao,Shifu Wang,Xinyi Ren,Yuanlong Tan,Ying-Rui Lu,Shibo Xi,Shengping Wang,Xuning Li,Yanqiang Huang,Zhang Taozhu,Bin Liu
出处
期刊:Research Square - Research Square
日期:2023-01-11
标识
DOI:10.21203/rs.3.rs-2451292/v1
摘要
Abstract Single-atom catalysts with a well-defined metal center open unique opportunities for exploring the catalytically active site and reaction mechanism of chemical reactions. However, understanding of the electronic and structural dynamics of single-atom catalytic centers under reaction condition is still limited due to the challenge of combining operando techniques that are sensitive to such sites and model single-atom systems. Herein, supported by state-of-the-art operando techniques, we provide an in-depth study of the dynamic structural and electronic evolution during electrochemical CO 2 reduction reaction (CO 2 RR) of a model catalyst comprising iron only as a high-spin (HS) Fe(III)N 4 center in its resting state. Operando 57 Fe Mössbauer and X-ray absorption spectroscopies clearly evidence the change from a HS Fe(III)N 4 to a HS Fe(II)N 4 center with decreasing potential, CO 2 - or Ar-saturation of the electrolyte leading to different adsorbates and stability of the HS Fe(II)N 4 center. With operando Raman spectroscopy and cyclic voltammetry, we identify that the phthalocyanine (Pc) ligand coordinating the iron cation center undergoes a redox process from Fe(II)Pc to Fe(II)Pc − . Altogether, the HS Fe(II)Pc − species is identified as the catalytic intermediate for CO 2 RR. Furthermore, theoretical calculations reveal that the electroreduction of the Pc ligand modifies the d-band center of the in situ generated HS Fe(II)Pc − species, resulting in an optimal binding strength to CO 2 and thus boosting the catalytic performance of CO 2 RR. This work provides both experimental and theoretical evidence towards the electronic structural and dynamics of reactive sites in single-Fe-atom materials and shall guide the design of novel efficient catalysts for CO 2 RR.
科研通智能强力驱动
Strongly Powered by AbleSci AI